
ADA22l7 997

TD-j

+

v)1
-t.-O $ g4

App ___d

0 g

rejects

Computers and Mathematics

Erich Kaltofen Stephen M. Watt
Editors

Computers and
Mathematics

Springer-Verlag
New York Berlin Heidelberg
London Paris Tokyo

*1
I

/

Erich Kaltofen
Rensselaer Polytechnic
Department of Computer Science
Troy, NY 12180, U.S.A.

Stephen M. Watt
IBM Watson Research Center
Yorktown Heights, NY 10598, U.S.A.

Library of Congress Cataloging-in-Publication Data

Computers and mathematics / Erich Kaltofen, Stephen M. Watt, editors.
p. cm.

To be used at conference on computers & mathematics at
Massachusetts Institute of Technology, June 12, 1989.

I. Mathematics-Data processing-Congresses. 1. Kaltofen. Erich.
11. Watt, Stephen M. Ill. Massachusetts Institute of Technology.
QA76.95.C64 1989
5 10'.28'5-dc2O 89-6259

Printed on acid-free paper.

© 1989 by Springer-Verlag New York Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY 10010, USA),
except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Camera-ready text provided by authors
Printed and bound by R.R. Donnelley & Sons, Harrisonburg, Virginia
Printed in the United States of America.

98765432 1

ISBN 0-387-97019-3 Springer-Verlag New York Berlin Heidelberg
ISBN 3-540-97019-3 Springer-Verlag Berlin Heidelberg New York

Accesion For

NTIS CRA&i
DTIC TAB 0
Unannounced 0

PRIGE-$39.UU per Springer Verlqg Justiica.on
TELECON AA 4, f4 /30/90 VG Sa

S, t V /00#/C Distribution I

Availability Codes

Avail and/or
Dist Special

opy

About the Cover
Page from Ramanujan's Lost Notebook. Ramanujan's Lost Notebook is a collection of
pages of formulas and calculations done by Ramanujan during the last year of his life. It was
apparently in the possession of G. 1H. Hardy and G. N. Watson between 1920 and 1965; however
neither one ever mentioned it in print. R. Rankin and J. M. Whittaker assisted Watson's
widow in placing the Lost Notebook in the Wren Library in Cambridge. It was examined by
G. E. Andrews in 1976, and he published the first discussion of its contents in the American
Mathematical Monthly in 1979.
This is one of the most amazing pages in the Lost Notebook. The last four formulas are examples
of the Mock Theta Conjectures (settled in 1988 by D. R. Hickerson). The formulas for F(q'/5)
and f(qll') are, in fact, crucial to the explanation of certain partition congruences found by
Dyson, Atkin, Swinnerton-Dyer and Garvan. (This page was reproduced by courtesy of Narosa
Publishing House, New Delhi.)

Trefoil Tube. Building a tube around a space curve provides a powerful technique for analyzing
local properties like curvature and torsion as well as global properties such as knottedness. The
tube around a trefoil knot, produced by Thomas Banchoff and associates at Brown University,
is re!ated to the stereographic projection of an orbit of a dynamical system on the unit sphere
in 4-dimensional space. This example was studied in collaboration with Hiieseyin Kogak, Fred
Bisshopp, David Laidlaw and David Margolis.

Cover design by Alexandra Gatje/Richard Jenks

Preface

Computers and Mathematics '89 is the third in a series of conferences devoted to the use
of computers in mathematics and the mathematical sciences. This is interpreted in a broad
sense; computers are used in mathematics not just for approximate numerical calculation but
in virtually every area of pure and applied mathematics, including algebra, geometry, number
theory, group theory, integration and differential equations.

Tach of the conferences in' thissees has ha a strong, interdisciplinary program of invited
speakers. In Computers and Mathematics '89 the contributed research papers have assumed an
equally important role. This volume contains the contributed papers accepted for presentation,
selected from 85 drafts submitted in response to the call for papers.

The program committee wishes to thank all who submitted papers for consideration and all who
assisted in the selection process. The program committee chairman would like to express his
thanks to Mrs. Donna Carr for her untiring assistance in the secretarilI work.

Johannes Buchmann (Saarbriicken)
Herbert Edelsbrunner (Illinois)
John Fitch (BAh, England)
Keith Geddes (Waterloo)
Erich Kaltofedi (Rensselaer), Chairman
Daniel Lazard (Paris)
Michael Overton (New York University)
Fritz Schwarz (GMD Bonn)
Neil Soiffer' (Tektronix, Beaverton)
Evelyne Tournier (Grenoble)
Stephen Watt (IBM Research)
Franz Winkler (Linz, Austria)

Conferences in the Computers and Mathematics Series

Computer Algebra as a Tool for Research in Mathematics and Physics,
April 5-6, 1984, Courant Institute of Mathematical Sciences, New York. &
Computers and Mathematics '86,
July 30-August 1, 1986, Stanford University, California.

Computers and Mathematics '89,
June 13-17, 1989, Massachusetts Institute of Technology.

Table of Contents

Tu~esday June 13, 1989
Session 1, Track A (10:45am-12:3Opm)
Chair: Erich Kaltofen

A Completion Procedure for Computing a Canonical Basis for a k-Subalgebra
D. Kapur, SUNY at Albany
K. Madlencr, Universitit Kaiserslautern....................................... I
Summation of Harmonic Numbers''
D. Y. Savio, E. A. Lamagna, S.ZMKi , The University of Rhode Island 12
Algorithm and Implementation f) mputation of Jordan Form Over A[xi, ... ,

N. Strauss, Pontificia Unyie Catolica. do Rio de Janeiro 21
Fast Groupemidis, Wp Using a Strong Generating Test for Permutation Groups(G-C--perman, L. Finkelstein, Northeastern University

PW. Purdom Jr., Indiana University)............27

Finite-Basis Theorems and a Computation-Integrated Approach\
to Obstruction Set Isolation 3M. R. Fellows, University of Idaho/
N. G. Kinnersley, M. A. Langston, Washington State Universit 37

Session--,-Tack-B-(1:45am1-2:3 pmn

Chir: Stephen Watt

Practical Determination of the Dimension of an Algebraic Varietyj "I
A. Galligo, University of Nice and INRIA/Sophia Antipolis, France /~
G-raverso,University.oLisa~lt 46

(:A Computer Generated Census of Cusped Hyperbolic 3-Manifolds 5 >
M. Hlildebrand, Harvard University

3 ek~tacarNew-York.................................53
Cassicality of Trigonal Curves of Genus Five

P. Viana, MIT and P.U.C. Pontificia Universidade Cat6fica, Rio de Janeiro 60
Symmetric Matrices with Alternating Blocks
A. 1Iefez, Univ. Fed. do Esp. Santo, Vitoria,t'ra~il

p, -Cp~lgenUniversity. - Z 66

Cohomology to Compute
C D. Leites, Stockholm University
G. Post, University of Twente, The Netherlands.................................. 73

Wednesday June 14, 1989
Session 2, Track A (4:00pm-5:45pm)
Chair: Wolfgang Lassner

Use of Symbolic Methods in Analyzing an Integral Operatorj
H. F. Trotter, Princeton University..................... 82

c- Vomputer Al1gebraic M0efoiV8§rhxzvestigatirig-Pinl ferential Systems
,,pLCknter and Focus Type

~onpmn WagA era Sinica, Beijing...................................... 91
An Example of Computer Enhanced Analysis a
P. J. Costa, R. H. Westlake, Raytheon Company, ayland, MA..................... 100

An Algorithm for Symbolic Computation of Hopf Bifurcation
E. Freire, E. Garnero, E. Ponce, University of Sevilla, Spain 109

Application of the Reduce Computer Algebra System to
Stability Analysis of Difference Schemes
V. G. Ganzha, Inst. of Theoret. and Appl. Mechanics, Novosibirsk, and T. U. Mfinchen
R. Liska, Technical University of Prague ... 119

Session 2, Track B (4:00pm-5:45pm)
Chair: Johannes Buchmann

Signs of Algebraic Numbers
T. Sakkalis, New Mexico State University, Las Cruces 130
Efficient Reduction of Quadratic Forms
N. W. Rickert, Northern Illinois University, DeKalb 135

A Story About Computing with Roots of Unity
F. Bergeron, Universit6 du Quebec 4 Montreal 140

Exact Algorithms for the Matrix-Triangularization Subresultant PRS Method
A. G. Akritas, University of Kansas ... 145

Computation of Fourier Transforms on the Symmetric Group
D. Rockmore, Harvard University ... 156

Thursday June 15, 1989
Session 3, Track A (9:00am-10:20am)
Chair: Evelyne Tournier

Integration in Finite Terms and Simplification with Dilogarithms: A Progress Report
J. Baddoura, Massachusetts Institute of Technology 166
Why Integration is Hard
H. J. Hoover, University of Alberta .. 172
Liouvillian Solutions of Linear Differential Equations with Liouvillian Coefficients
M. F. Singer, North Caroliha State University .. 182
Recipes for Classes of Definite Integrals Involving Exponentials and Logarithms
K. 0. Geddes, T. C. Scott, University of Waterloo 192

Session 3. Track B (9:00am-10:20arn)
Chair: Franz Winkler

Logic and Computation in MATHPERT: An Expert System for Learning Mathematics
M. J. Beeson, San Jose State University ... 202

Representation of Inference in Computer Algebra Systems with Applications to
Intelligent Tutoring
T. A. Ager, R. A. Ravaglia, Stanford University
S. Dooley, University of California at Berkeley 215
Bunny Numerics: A Number Theory Microworld
C. Graci, J. Narayan, R. Odendahl, SUNY College at Oswego 228

Advanced Mathematics from an Elementary Viewpoint:
Chaos, Fractal Geometry, and Nonlinear Systems
W. Feurzeig, P. Horwitz, A. Boulanger, BBN Laboratories, Cambridge, MA 240

Session 4, Track A (10:45am-12:05pm)
Chair: Fritz Schwarz

Iterated Function Systems and the Inverse Problem of / actal Construction
Using Moments
E. R. Vrscay, C. J. Roehrig, University of Waterloo 250
Working with Ruled Surfaces in Solid Modeling
J. K. Johnstone, The Johns Hopkins University 260
Using Macsyma to Calculate the Extrinsic Geometry of a Tube in a Riemannian Manifold
H. S. D. Mills, M. H. Vernon, Lewis Clark State College, Lewiston, Idaho 269
Computer Algebra in the Theory of Ordinary Differential Equations of Halphen Type
V. P. Gerdt, N. A. Kostov, Joint Institute for Nuclear Research, Dubna 279

Session 4, Track B (10:45am-12:05pm)
Chair: Neil Soiffer

Symbolic Derivation of Equations for Mixed Formulation in Finite Element Analysis
H. Q. Tan. The University of Akron ... 289
Semantics in Algebraic Computation
D. L. Rector, University of California at Irvine 299

Symbolic Computation with Symmetric Polynomials: An Extension to Macsyma
A. Valibouze, LITP, Paris .. 308
Simultaneous Computations in Fields of Different Characteristics
D. Duval, Universit6 de Grenoble I .. 321

xi

~~. ~~~n: ~List of 3.ntibutrsyn..........2
T. A. Ager...................... 215 R. Liska........................ 119
A. G. Akritas 145 S.-M. Liu 12
J. Baddoura 166 K. Madlener 1I
M. J.Ben....................... 202 H. S. D. Mills 269

F.B rein................... 140 J aaa 2
A.Bolngr................... 240 R. Odendahi 228

G. Cooperman................... 27 E. Ponce 109
P. 3. Costa...................... 100 0. Post......................... 73
S. Dooley....................... 215 P. W. Purdom Jr 27
D. Duval....................... 321 R. A. Ravaglia 215
M. R. Fellows.................... 37 D. L. Rector 299
WV. Feurzeig..................... 240 N. W. Rickert 135
L. Finkelstein.................... 27 D. Rockrnore 156
E. Freire........................ 109 C. J1. Roehrig 250

* A. Galligo 46 T. Sakkalis...................... 130
E. Gamero, 109 D. Y. Savio 12
. G. Ganzha 119 T. C. Scott 192

K(. 0. Geddes 192 M. F. Singer 182
V. P. Gerdt..................... 279 N. Strauss 21

* C. Graci........................ 228 H. Q. Tan 289
A. Hefez........................ 66 A. Thorup 66
M. Hildebrand................... 53 0. Traverso 46
H. J. Hoover 172 H. F. Trotter 82
P. Horwitz 240 A. Valibouze 308
J. K. Johnstone.................. 260 M. H. Vernon 269
D. Kapur........................ 1 P. Viana........................ 60
N. G. Kinnersley 37 E. R. Vrscay 250
N. A. Kostov.................... 279 Dongrning Wang 91
E. A. Lamagna................... 12 J. Weeks 53
M. A. Langston.................. 37 R. H. Westlake................... 100
D. Leites 73

A Completion Procedure for Computing a
Canonical Basis for a k-Subalgebra

Deepak Kapur
Department of Computer Science

State University of New York at Albany
Albany, NY 12222

kapur@albanycs.albany.edu

Klaus Madlener
Fachbereich Informatik

Universitt Kaiserslautern
D-6750, Kaiserslautern, W. Germany

Abstract

A completion procedure for computing a canonical basis for a k-subalgebra is proposed.
Using this canonical basis, the membership problem for a k-subalgebra can be solved. The
approach follows Buchberger's approach for computing a Grbbner basis for a polynomial
ideal and is based on rewriting concepts. A canonical basis produced by the completion
procedure shares many properties of a Gr~bner basis such as reducing an element of a k-
subalgebra to 0 and generating unique normal forms for the equivalence classes generated
by a k-subalgebra. In contrast to Shannon and Sweedler's approach using tag variables, this
approach is direct, One of the limitations of the approach however is that the procedure
may not terminate for some orderings thus giving an infinite canonical basis. The procedure
is illustrated using examples.

I Introduction

A procedure and related theory for computing a canonical basis for a finitely presented k-
subalgebra are presented. With a slight modification, the procedure can also be used for the
membership problem of a unitary subring generated by a finite basis using a Gr6bner basis like
approach.

The procedure is based on the rewriting approach following Buchberger [1965, 1976, 1985]
and Knuth and Bendix [1970]. The structure of the procedure is the same as that of Buchberger's
algorithm for computing a Gr5bner basis of a polynomial ideal. The definitions of reduction and
critical pairs (also called S-polynomials) are different; they can be considered as a generalization
of these concepts in Buchberger's algorithm. This approach for solving the membership problem
for a k-subalgebra is quite different from the approach taken by Shannon and Sweedler [1987,
1988] in which tag variables are used to transform the subalgebra membership problem to the
ideal membership problem. The proposed approach is direct, more in the spirit of the recent
work of Robbiano and Sweedler 11988]. However, it is based on rewriting concepts and employs
completion using critical pairs.

a G is called a canonical basis (or even a Gr5bner basis) of the k-subalgebra generated by F.
The unique normal form of a polynomial p with respect to G is called the canonical form of the
polynomial p with respect to G. For definitions of various properties of rewriting relations, the
reader may consult [Loos and Buchberger. Below, we assume that polynomials are in the sum
of products form and they are simplified (i.e., in a polynomial, there are no terms with zero
coefficients, monomials with identical terms are collected together using the operations over the
field k).

3 , Making Rules from Polynomials

Let < be a total admissible term ordering which extends to a well-founded ordering on polynomi-
als [Buchberger, 1985]. Let ht(f) be the head-term off with respect to <. For each polynomial
f, we can define a rewrite rule (simplification rule) as follows (for making a rule, we can assume
without any loss of generality that the head-coefficient of f is 1):

ht(f) -, -(f - ht(f)).

Associated with a basis {f, "', fm I" "} of polynomials is a set 7Z = {L, - R," ",
L,,, -* Rm," - .} of rules made as above. We will also use k[R] to stand for the k-subalgebra gener-
ated by {f," ", ,"" "}. We define a reduction relation induced by R? on polynomials as follows:

p-*q if and only if

i. p = ct + p', where ct is a monomial in p (c E k, c ;A 0, and t is a term) and p' does not
have any monomial whose term is t,

ii. there are 1 <j < j 2 < < j, I > 0, natural numbers di,.-. ,di, such that t=
L , , d i, L j dj 2 L , dJ,,

iii. the term t' in any monomial bigger than ct in p cannot be expressed as a product of powers
of the left sides of a non-empty subset of the rules in R, and

iv. q = p - c(Lj, - Rj.)dl (Lj2 - Rh)dn ... (Li, - Ri,)dn.

It is easy to see that p - q E k[R.].
Unlike in Grbbner basis algorithms for polynomial ideals or in term rewriting systems, a

single step reduction can thus simultaneously involve many rules.
The third condition above is strictly not necessary but is motivated by implementation

concerns. If this condition is not imposed and a weaker reduction relation is defined using (i),
(ii) and (iv), in which any monomial (instead of the biggest possible monomial) can be reduced,
the results below work also (some proofs may have to be modified though). Using the above
definition of a reduction relation, it is possible to consider monomials in descending order for
rewriting since any monomial in p once reduced will not reappear in the polynomials obtained
by rewriting p.

Even if t satisfies condition (ii) above, we cannot rewrite a proper subterm of t; we must
always rewrite the whole term t. This is to so because the polynomial p-q must be in k[1?]. Also
observe that an element of k always reduces to 0 using any basis by taking d= .-di = 0.
Thus ?. need not contain rules corresponding to elements of k as well as the right sides of rules
need not have elements of k as monomials.

I2

4! 4

-~I ________ ______

The proposed approach has a disadvantage however over the indirect approach of Shannon
and Sweedler in the sense that for some orderings on indeterminates and terms, the completion
procedure may not terminate and thus generate an infinite canonical basis. This raises an
interesting open question: Given a finitely presented k-subalgebra, does there exist an ordering
on terms for which the completion procedure will terminate? If so, how can such an ordering
be computed?

In the next section, definitions are given. Section 3 discusses how rules are made from
polynomials, and a reduction relation is defined using a set of rules corresponding to a k-
subalgebra basis. Properties of this reduction relation are stated and it is shown that the
reduction relation is strong enough so that its reflexive, symmetric and transitive closure is
precisely the equivalence relation induced by the associated k-subalgebra. A canonical basis of a
k-subalgebra is defined. Section 4 defines superpositions, critical pairs and S-polynomials which
lead to a finite test for checking whether a given finite basis of a k-subalgebra is a canonical
basis. Section 5 is the main result which shows that if all S-polynomials corresponding to
critical pairs of a set of rules reduce to 0, then the corresponding basis is canonical. Section 6
outlines a completion procedure based on the test of Section 5, and properties of canonical bases
generated by a completion procedure are discussed. A finite canonical basis always exists for
a k-subalgebra over k[x]. A number of examples taken from papers by Shannon and Sweedler
as well as Robbiano and Sweedler are discussed illustrating the procedure. Some comments on
how this approach can be modified to be applicable to unitary subrings are given in the final
section. Further details and proofs are given in an expanded version of this paper [Kapur and
Madlener, 1989].

2 k-Subalgebras and Canonical bases

Let k[xl, .. " , x,,] be the polynomial ring over a field k with xl, ... , X. as indeterminates. A
unitary subring generated by a finite basis F = {f,,' , f,,}, each ft E k[xi, .. . , xn], is the
smallest subring containing 1 and the elements of F (i.e., if p and q are in the subring, then
p- q as well as p*q are in the subring'). A k-subalgebra generated by F is the smallest unitary
subring generated by F and containing k (see Zariski and Samuel for definitions). Following
Shannon and Sweedler, we write this k-subalgebra as k[f,, ... , f]. It is easy to see that a
k-subalgebra k[f,..., fm] defines an equivalence relation on the polynomial ring k[xl,... Xn],
just like a congruence relation defined by an ideal. Polynomials p and q are equivalent modulo
k[fi-"", f n] if and only if p - q E k[fl,.-. , fno].

Our goal is to compute canonical forms for equivalence classes induced by a k-subalgebra
k[fl, ... , fm]. We follow the approach proposed by Buchberger [1965, 1985] for computing canon-
ical forms for congruence classes defined by a polynomial ideal. As in Buchberger's approach,
with each basis F, we associate a reduction relation -*F; we will often omit the subscript when-
ever it is obvious from the context. This reduction relation is associated after first defining a
total well-founded ordering on polynomials in k[x,.--, x]. Such an ordering can be defined in
the same way as is usually done in the case of the Gr5bner basis algorithm for polynomial ideals
using admissible orderings on terms [Buchberger, 1985].

From a given basis F, the goal is to compute another basis (preferably finite) G = {g, " ",'}
such that (i) k[fl,', , i] = k[g1, ... , g,], (ii) for every element p E k[fa,-- , fin], p .- 0, and
(iii) for every eleirciz q E klxi, . x,,J, q has a unique normal form with respect to -G. Further,
for any p and , q, p and q have the same normal form :' .nd only if p - q E k[fl, ... , f]. Such

lConfrdst this definition with that of an ideai which is closed under multiplication with respect to any element
of the polynomial ring k[zi,..., z] instead of only the elements of the subring.

3

We believe that Robbiano and Sweedler [1988] defined the reduction relation in a similar way
except that they consider only the head-term of p instead of any term in p. In their approach,
if the head-term cannot be reduced (i.e., cannot be expressed as a product of powers of the left
sides of any subset of rules), then the polynomial p cannot be reduced.

Consider the following example from Shannon and Sweedler [1988].
Let F = {1. x 3

- x, 2. x2} be a basis over Q[x]. Using the degree ordering, the rules
corresponding to the above polynomials are: 1 = {1. x3 -* x, 2. x2 - 0}. Any polynomial
which has a term whose degree is a multiple of 3 or a multiple of 2, can be reduced using the
rule 1 or rule 2 respectively. A polynomial containing x5 or x7 as a term can also be reduced
using both the rules 1 and 2. However, a monomial with term x cannot be reduced by X?. For
example, X7 -2x s +3x 5 - 2 -* -2 x6 +4x' - 2 -- 4x5 -2 -4 4X 3 - 2 - + 4x-2 - 4x. The
polynomial 4x cannot be reduced further.

3.1 Properties of Reduction Relations

Proposition 3.1: The reduction relation --* is terminating.

This follows from the fact that (i) the left side of a rule is the head-term of a polynomial
with respect to an admissible ordering < which is well-founded and (ii) the reduction relation
always completely reduces a monomial by replacing it by a strictly smaller polynomial.

A polynomial p is said to be irreducible (or in normal form) if and only if there is no q such
that p -+ q. A polynomial p has a normal form q if and only if p --+* q and q is in normal form.
For example, 4x above is a normal form of x7 - 2x' + 3x' - 2. Thus,

Proposition 3.2: Every p E k[1X,... ,x,] has a normal form with respect to the reduction
relation -* defined by a set of rules 1Z.

Theorem 3.3: The relation +4*, the reflexive, symmetric and transitive closure of -+, is
the k-subalgebra equivalence relation induced by k[R] associated with T?, i.e. for any p and q,
p -* q if and only if p - q E k[1Z].

The proof of this theorem is very similar to those given in [Buchberger, 1976] for the con-
gruence relation defined by an ideal over a polynomial ring over a field and in [Kandri-Rody
and Kapur; 19841 for the congruence relation defined by an ideal over a polynomial ring over a
Euclidean domain.

A reduction relation --* is said to be canonicalif and only if -+ is terminating and is confluent,
i.e., for every polynomial p, p has a unique normal form (called the canonical form of p) with
respect to --*. A basis is called a canonical basis if and only if the associated reduction relation
- is canonical. In the next section, we discuss a finite test for checking whether a basis is a
canonical basis using the concepts of superpositions, critical pairs and S-polynomials.

4 Superposition, Critical-pair and S-polynomial

We now define the notions of superposition and critical pairs for rules in
S{L 1 -* R 1, '., L. -+ Rm, .. .}. Just as a reduction relation is defined using many rules, the

critical pair and S-polynomial are defined, in general, using more than two rules (equivalently,
polynomials). This is quite different from the definitions of critical pair and S-polynomial in
[Buchberger, 1976; 1985] as well as in [Kandri-Rody and Kapur, 1984], or for that matter in term
rewriting systems. These definitions can in fact be considered generalizations of the definitions
of M-polynomials given in [Kapur and Narendran, 1985]. Below, we give two different ways
to define superpositions and S-polynomials; the first one is intuitively appealing whereas the

4

second one is suitable for computations and proofs.
A finite non-empty subset {Lj, L 2,...., Lj} of 7?. is said to superpose (or overlap) with

another disjoint subset {Li, Li,..., Li,} of 1Z (i.e., rule numbers j1 's and ii's are disjoint) if
and only if there is a minimal vector of positive natural numbers < did 2, , dj, >, which
are exponents associated with rules {Lj,, L ,....., 14 }, and another vector of positive numbers
< e, ei,"", e, >, exponents associated with rules {Li, Li2,..., Li,, such that

L31di Li, 4 ..2 . Lidi, = Liei, Li2 Lil,

The vector < dj,, dj2 , dj, > is minimal in the sense that for no vector that is smaller than it,
there are positive numbers < eh, ei2,". ., ei,, > satisfying the above property about the left sides
of the rules (< Ch c2," ", c > is smaller than < c', -,., c > if and only if they are distinct and
each ci 5 c , 1 :5 i < 1). It is possible to have two non-comparable I vectors < ee, e ,... , ei, >
and < e, e ,... e. > for the same minimal k-vector < dj,, d 2,... , dj, > satisfying the above
property about the left sides of the rules. In that case, the rule subset {Lj,, Li2 , -- , 'i,} is said
to superpose in more than one ways.

The critical pair associated with this superposition is:
< L, Lj24... L di, - (Li. - R,)di (Lj2 - Rj2)d,2... (L i, - Ri,)dh,

Li, , Lm.i2 L. , i'l - (Li, - Ri,)ei (Li2 - R2)e'2 . .. (Lil, - Rl,) ,, >.

The S-polynomial corresponding to the critical pair is:

(Lii - Rj,)d, (L3, - Rf2)dj2 ... (L, - Ri,)dh - (Lii - Ri,)"a (Li2 - R 2)"2 .. (Li, - R,) .

It is obvious that the S-polynomials of 1?. belong to k[?].

The set of critical pairs for a finite set 7?. of rules is always finite; a bound can be computed
using the degree of the indeterminates appearing in the left sides of rules [Stickel, 1981; Huet,
1978]. The finiteness of the number of critical pairs also follows from the fact that the vectors
of exponents <di,.., dm) ei,.., em >, with dj, ei > 0, satisfying the following equation, form
an abelian monoid which has a finite basis.

Li 1 L 2 d2 ... Lm.d = Lit' L 2 2 ... Lmem

An alternate way of computing the exponents of the left sides of rules above is to set up a finite
set of diophantine equations from the left sides of rules for a finite R?2. For each indeterminate
xi, there is a linear diophantine equation

divi, + d2vi2 +"" + dnvim = elvi, + e2Vi2 +"" + emvi,,,,

where v,,.. ., vi are, respectively, the degrees of xi in the left sides of rules 1,..., m. So
there are n such linear diophantine equations. These equations are solved for dl,.. , d. and
el'.. e,, and a basis of minimal non-zero simultaneous solutions in which if d1 # 0, then
ei = 0 and if ei 0 0, then di = 0, can be computed. Using these basis vectors, any solution
to these simultaneous equations can be obtained as a nonnegative linear combination of the
vectors in the basis (i.e., the multipliers are nonnegative). Further, only one of the two solutions
< dl) ,. dm,, ... , em> and < el,..,- emm d, dm > need to be considered because of the
symmetric nature of the diophantine equations. These equations can be solved using algorithms
proposed for solving linear diophantine equations arising i.. associative-commutative unification
problems [Stickel, 1981; Huet, 1978]. The finiteness of a basis from which all solutions to the
above set of equations can be generated, also follows from the results related to these algorithms.

It will be interesting to compare these definitions with the corresponding concepts in Rob-
biano and Sweedler's approach.

2This formulation however extends to be applicable to an infinite R also.

5 A Test for a Canonical Basis

The following is a Church-Rosser theorem for k-subalgebras.
Theorem 5.1: The set 7Z = {L 1 - ,, -Lm4 R,,,, .. is canonical or equivalently,

the corresponding basis {f:,"',f
m

, is a canonical basis if and only if all S-polynomials
generated using every finite subset of 7Z reduce to 0.

The proof of the theorem uses the following lemmas.

Lemma 5.2: If p -* 0, then for any Li -4 Ri E TZ, (Li - R -)p 4" 0.
Note that it is not necessarily the case that t p --* 0 for any term t or even for t = Li, the

left side of a rule in 7.
It follows by induction from the above lemma that

Corollary 5.3: If p -*" 0, for any c E k, and any natural numbers dj1,... ,dj,,

(c (L5 - Ril)dh, .
.-. (Li, - Ri.)d,, p) -* 0.

In addition, we have:

Lemma 5.4: If p -p 2 -4* 0, then p, and p2 are joinable, i.e., there is a q such that Pi -- q
and p2 "-** q.

Sketch of Proof of Theorem 5.1: The only if part of the proof is easy and is omitted. The
proof of the if part follows. Consider a polynomial p that can be reduced in two different ways.
Since the reduction is defined by rewriting the biggest possible monomial which can be reduced
using a finite subset of rules in ?, the only case to consider is when p has a monomial ct' which
can be reduced in two different ways and no monomial greater than ct' in p can be reduced. So
there exist two m-vectors < a,,..., a., > and < bl, " , , bm > with some ai and bj possibly 0,
such that t' = L' . . . L = L ' ... L b- and p- p, = p-c(Li -R) °%... (Lm - Rm)am as well
as p -4 P2 = p- c(Li - R,)b, ... (Lm -- Rm)b- . Let cl = min(alb,),.. ,c. = min(am, bm); ci's
correspond to the common powers of the rules applied on both sides. Let di = a, - cl, .., dm =
am - cm and ei = b, - cl, •, em = bm - cm. Because of Corollary 5.3, and Lemma 5.4, it suffices
to show that

q = (Li - R,).. (Lm - p,)d_ - (Li - R,)el ... (L. - Rm)em _.* 0, (*)

such that for any i, if di 0 0 then ej = 0, and if ei 0 0 then di = 0.
This is shown by Noetherian induction using the well-founded ordering < on the head-term

t = Lid' ... Lmdm = Lie' ... Lm r. The basis step of t = 1 is trivial. The induction hypothesis
is to assume that (*) holds for t' < t.

There are two cases: (i) t cannot be decomposed into t, 0 1 and t2 i 2 such that t = t t2,
and both t, and t 2 can be reduced by the rules in 7Z. This implies that the exponent vector
< dl,... •dn, ei, '. •, e.> belongs to a minimal basis set of solutions obtained from diophantine
equations associated with 1Z since this exponent vector cannot be expressed as a sum of two
non-zero exponent vectors. The S-polynomial corresponding to this exponent vector reduces to
0 by the assumption that all the S-polynomials of 7? reduce to 0.

(ii) t = ti t2, and t1, t2 0 1: By the induction hypothesis, for i = 1,2,

Si = (Li - R .)
"

. . (L. - Rm)dm - (Li - R1)eil ... (L - Rm,)el- -* 0,

where ti = Ld ' .". LinM = L, 'el ... Lmeim. Obviously, dj = d1j + d2i and ej = e:j + e2j.
If s, reduces to 0 in 11 reduction steps by reducing terms ri, .. , rill in the first, .. ., 11-th step,

respectively, then by Corollary 5.3, (L -)... (Lm - Rm)d- s, also reduces to 0 in exactly

!6

11 steps by ieducing terms t2 r 1 , ', t2 rln, in the respective steps. A similar reduction sequence
can be obta ed for (LI - (L,. - R)"- 32 reducing to 0 from the reduction sequence
S2 -+1 0. Now q = (L 1 - 1)"' . (Ly, - Rm)d2m 81 + (Li - R1)e .l.. (Ln - Rm)e "

82 and
a reduction sequence from q to 0 can be constructed by appropriately mixing the reduction
steps from the above reduction sequences and additional reduction sequences available using the
induction hypothesis. These details can be found in the proof given in an expanded version of
this paper [Kapur and Madlener, 1989].

Thus R is a canonical basis. 0

6 Completion Procedure

From the above theorem, one also gets a completion procedure similar to Buchberger's Gr6bner
basis algorithm [19851 or the Knuth-Bendix procedure [1970] (see also Huet, 1981) whose cor-
rectness can be established using methods similar to the one given in Buchberger's papers. If
a given basis of a k-subalgebra is not a canonical basis, then it is possible to generate a canon-
ical basis equivalent to a given basis of a k-subalgebra using the completion procedure. For
every S-polynomial of a basis that does not reduce to 0, the current basis is augmented with a
normal form of the S-polynomial and the basis is inter-reduced. This process of generating S-
polynomials, checking whether they reduce to 0, and augmenting the basis with -normal forms of
S-polynomials is continued until all S-polynomials of the final basis reduce to 0. Optimizations

and heuristics can be introduced into the completion procedure in regards to the order in which
various finite subsets of a basis are considered; further, since a finite subset of a basis may result

in many S-polynomials, if some S-polynomial results in a new rule which simplifies any rule in
the subset under consideration, then the subset does not have to be considered.

Unlike Gr~bner basis algorithms, this process of adding new polynomials to a basis may not
always terminate. An example below illustrates the divergence of the completion procedure.
We consider this a major limitation of this approach in contrast to Shannon and Sweedler's
approach. However, the following results are immediate consequences of general results in term
rewriting theory [Huet, 1981; Butler and Lankford, 1980; Avenhaus, 1985; Dershowitz et al,
1988] since orderings on polynomials are total, thus a rule can always be made from a polyno-
mial, and the completion procedure will never abort because of the inability to make a rule.

Theorem 6.1: If a completion procedure follows a fair strategy in computing superpositions
and critical pairs, then the completion procedure serves as a semi-decision procedure for k-
subalgebra membership even when the completion procedure does not terminate.

Theorem 6.2: Given a polynomial ordering <, if a k-subalgebra has a finite canonical basis
with respect to <, then a completion procedure with a fair strategy would generate a finite
canonical basis.

Further, such a finite canonical basis is unique with respect to < if it is reduced (i.e., for
every polynomial in the basis, none of its monomials can be reduced using the remaining set of
polynomials in the basis).

A strategy is called fair if and only if all superpositions among all possible finite subsets of
rules are eventually considered. There can be many ways to generate superpositions and critical
pairs which would constitute a fair strategy. A simple fair strategy is to consider superpositions
in the degree ordering irrespective of the ordering < used for making rules from polynomials.

For the univariate case, the completion procedure always terminates.

Theorem 6.3: A k-subalgebra over k[x] always has a finite canonical basis which is gener-

ated by the completion procedure.
Sketch of Proof. Suppose r polynomials with the degrees d,... , . are already generated

in a basis. There is a number bound(di,... , d,) that is a multiple of d = gcd(d, ... , dr) such
that every multiple of d which is > bound(d1 ,..., 4) can be expressed as a nonnegative linear
combination of {d,,..., d,}. Since a polynomial will be added to the basis only if the degree of
its head-term cannot be expressed as a nonnegative linear combination of {dl,..., dr}, one can
only add to the basis, polynomials of degree < bound(d,,.. . , dr) or of degree d+, which is not
a multiple of d. In the second case, the gcd(d,.. ., d, d,+) < d. .

6.1 Examples

Example 1: Consider the example from Shannon and Sweedler [1988] which was discussed
earlier. The basis is F1 = {1. x3 - x, 2. x2} and the rules corresponding to the basis are:
1 = {1. x3 -- x, 2. X2 -* 01. A critical pair can be obtained by solving the following
diophantine equation:

3d, + 2d 2 = 3e, + 2e2.

The basis of the solutions to this equation is: < 2,0,0,3 >. The superposition is x' and the
critical pair is: < 2x4 - X2 ,0 >. The S-polynomial 2x4 - x2 reduces to 0. So, F is a canonical
basis. In contrast, Shannon and Sweedler's approach using tagged variables will have to perform
more complex computations to get a Grbbner basis involving tag variables.

Example 2: Let us consider an example given by Robbiano, F2 = {X3 , x4 , xs + X2 + x}. The
rules corresponding to them are:

R={1. x3 -4 0, 2. X4
_0, 3. x"--x 2 -x}.

Superpositions and critical pairs can be computed by setting up a diophantine equation:

3d + 2 + 5d = 3e + 4e2 + 5e 3 .

A minimal basis for the solutions to the above equation is:
{< 1,0,1,0,2,0 >,< 0,1,1,3,0,0 >,< 0,0,2,2,1,0 >,< 4,0,0,0,3,0 >,< 5,0,0,0,0,3 >,
< 1,3,0,0,0,3 >,< 0,5,0,0,0,4 >}.
Corresponding to the first solution, the critical pair is obtained by a superposition generated by
the product of the left sides of rules 1 and 3 which is equal to the square of the left side of rule
2. The superposition is x8 , and the critical pair is < z + x4, 0 >. The S-polynomial z5 + X4

can be reduced to its normr! form -X 2 - x. This means that the given basis is not a canonical
basis.

A canonical basis can be obtained however by augmenting the original basis with normal
forms of S-polynomials thus computed and repeating this process. So the superposition x8 gives
an additional rule

p,4. X2 __ _X.

It is always better to use this rule to simplify the existing rules. Rule 2 gets simplified to x thus
, giving

2'. x -+ 0.

Rule 2' deletes every other rule. As a result, we did not have to consider critical pairs generated
by the rules 1, 2, and 3, which got deleted. This is in contrast to having to consider all
superpositions generated from the basis solutions of the above diophantine equation which would
have resulted in unnecessary computations.

t8

The basis {x} is a canonical basis for the k-subalgebra generated by {x 3, x1, xs + x2 + x}. It
should be easy to see from Theorem 5.1 that a singleton basis is always a canonical basis.

Example 3: Let us consider another example given by Robbiano, F3 = {x, y2 - xy, xy2}.
Using the total degree ordering defined by the ordering y > x, we get

Z 3s={1. x- 0, 2. y2 -xy, 3. Xy2
_O0}.

Rule 3 is normalized using rules 1 and 2 to 3'. x2y -4 0.

This set of rules gives the following diophantine equations for generating superpositions:

di + 2d 3 = el + 2e3,

2d 2 + d3 = 2e2 + 63.

A basis of common solutions to these equations is: {< 4,1,0,0,0,2 >}. So, the only superposi-
tion is generated by squaring the left side of rule 3' which is equal to the product of the fourth
power of the left side to rule 1 and the left side of rule 2. The critical pair is < 0, x5y > and its
S-polynomial x5y reduces to 0. So, {x, y2 - Xy, X2y} is a canonical basis for the k-subalgebra
generated by {x, y2

- Xy, Xy}.

For the same basis, if we use a different total degree ordering defined by the ordering x > y,
then the rule set is slightly different:

{1.x-*0, 2. xy-y 2 , 3.xy 2 .0}.

A critical pair is generated by identifying that the square of the left side of ruie 2 is equal to
the product of the left sides of rules 1 and 3. The S-polynomial in this case is 2xy3 - y4, which
gives a new rule:

4. xy3 --* 1/2 y .

There is no other superposition from the first three rules.
Rules 1 and 4 superpose with rules 2 and 3. The superposition is X2y 3 and the critical pair

is < 1/2xy 4, Xy4 >. The corresponding S-polynomial 1/2xy4 does not reduce any further, which
gives a rule:

5. xy 4
-4 0.

Also, the cube of the left side of rule 2 is equal to the product of the left side of rule 4 with the
square of the left side of rule 1. This gives the critical pair < y6 - 3x2 y4 + 3xys, 1/2 x2y4 >. If
the corresponding S-polynomial is reduced, we obtain y6 - 3xy' which gives another new rule:

6. xy5 --* 1/3 y6.

There is again a superposition since the fifth power of the left side of rule 2 is equal to the
product of the left side of rule 5 and the fourth power of the left side of rule 1. This gives
another new rule. It can be shown that this process of generating new rules continue and does
not terminate thus resulting in an infinite canonical basis, which is
{Xy2i+1 - 1/(j + 1)y 2j +2, xy2i I i > 0}.

This example illustrates that unlike in the case of ideals over Noetherian rings, this comple-
tion procedure need not terminate. Further, there are finitely generated k-subalgebras which
have finite canonical basis under one ordering but do not have a finite canonical basis under a
different ordering. These observations are similar to the ones made by Robbiano and Swe,,er.
The situation here is very similar to the one encountered in generating canonical basis for finitely
presented monoids (Thue systems) or for first-order equational theories; the reduction orderings
there also affect the termination of completion procedures.

It will be interesting to compare the computational performance of the above procedure with
Shannon and Sweedler's method.

7 Extension to Unitary Subrings

The approach discu3sed in this paper can be generalized to compute canonical bases for unitary
subrings. The coefficient field k is not included in every unitary subring even though Z is in-
cluded in every unitary subring if k is of characteristic 0. When rules are made, the coefficient
of the left side cannot be made 1, and the definition of reduction relation must be modified
to take into consideration the coefficients of the head-terms also. Similarly, the definitions of
superpositions, critical pairs and S-polynomials have to be changed to deal with the coefficients.
We are also investigating the extensions of this approach to unitary subrings of R[xi,... , X,],
where R is a commutative ring.

Acknowledgement: Most of this work was initiated while the first author visited Uni-
versity of Kaiserslautern during the summer of 1986 and during the winter of 1986 at the Con-
ference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS)
at New Delhi. The first author would like to thank Lorenzo Robbiano for his encouragement to
write this work; this paper would not have been written but for Robbiano's prodding after his
talk on this subject at a Gr5bner basis workshop in October 1988 at the Mathematical Sciences
Institute of Cornell University. We also thank Moss Sweedler for many helpful comments on the
first draft of this paper.

References

1. Avenhaus, J. (1985). On the termination of the Knuth-Bendix algorithm. Report 120/84,
Universitit Kaiserslautern, West German.

2. Buchberger, B. (1965). An algorithm for finding a basis for the residue class ring of a
zero-dimensional polynomial ideal. (in German) Ph.D. Thesis, Univ. of Innsbruck, Austria.

3. Buchberger, B. (1976). A theoretical basis for the reduction of polynomials to canonical
forms. ACM-SIGSAM Bulletin 10/3, 39, 19-29.

4. Buchberger, B., and Loos, R. (1982). Algebraic simplification. In: Computer algebra:
Symbolic and algebraic computation. (eds. Buchberger, Collins, and Loos), Computing Suppl.
4, Springer Verlag, 11-43.

5. Buchberger, B. (1985). Gr~bner bases: An algorithmic method in polynomial ideal theory.
In: N.K. Bose (ed.) Multidimensional Systems Theory, Reidel, 184-232.

6. Butler, G., and Lankford, D.S. (1980). Experiments with computer implementations of
procedures which often derive decision -algorithms for the word problem in abstract algebras.
Memo MTP-7, Dept. of Mathematics, Louisiana Tech. University, Ruston, LA, August 1980.

7. Dershowitz, N., Marcus, L., and Tarlecki, A. (1988). Existence, uniqueness, and construc-
tion of rewrite systems. SIAM . of Computing, to appear.

8. Huet, G. (1978). An algorithm to generate the basis of solutions to homogeneous linear
diophantine equations. Information Processing letters, 7, 3, 144-147.

9. Huet, G. (1981). A complete proof of correctness of the Knuth-Bendix completion proce-
dure. J. of Computer and Systems Sciences, 23, 1, 11-21.

10. Kandri-Rody, A., and Kapur, D. (1984). An algorithm for computing a Gr~bner basis
of a pc' ynomial ideal over a Euclidean ring. G.E. Corporate Research and Development Report
84C'D045, Schenectady, NY. A revised version appeared in J. of Symbolic Computation, August
1988.

10

11. Kapur, D., and Madlener, K. (1989). A completion procedure for computing a canon-
ical basis for a k-subalgebra. Technical Report 89-5, Department of Computer Science, State
University of New York at Albany, NY. An expanded version of this paper.

12. Kapur, D., and Narendran, P. (1985). Existence and construction of a Gr~bner basis for a
polynomial ideal. Presented at a workshop on Combinatorial algorithms in algebraic structures,
Europaische Akademie, Otzenhausen, W..Germany.

13. Knuth, D., and Bendix, P. (1970). Simple word problems in universal algebras. In: J.
Leech (ed.) Computational Problems in Abstract Algebras, Pergamon Press.

14. Lankford, D. S., and Ballantyne, A. M. (1983). On the uniqueness of term rewriting
systems. Unpublished note, Dept. of Mathematics, Louisiana Tech. University, Ruston, LA.

15. Robbiano, L., and Sweedler, M. (1988). Computing a canonical basis of a k-subalgebra.
Presented at a Mathematical Sciences Institute workshop on Gr5bner bases, Cornell University.

16. Shannon, D., and Sweedler, M. (1988). Using Gr5bner bases to determine algebra
membership, split surjective algebra homomorphisms and determine birational equivalence. J.
of Symbolic Computation, 6, 267-273.

17. Shannon, D., and Sweedler, M. (1988). Using Gr5bner bases to determine subalgebra
membership. Unpublished Manuscript, Dept. of Mathematics, Cornell University.

18. Stickel, M.E. (1981). A unification algorithm for associative-commutative unification.
Journal ACM, 28, 3, 423-434.

19. Zariski, 0., and Samuel, P. (1958). Commutative Algebra, Vol. 1. Springer Verlag, New
York.

II

Summation of Harmonic Numbers

Dominic Y. Savio, Edmund A. Lamagna, and Shing-Min Liu
Department of Computer Science and Statistics

The University of Rhode Island
Kingston, Rhode Island 02881

Abstract. The problem of finding closed forms for a summation involving harmonic
numbers is considered. Solutions for E'=1 p(i)H0k), where p(i) is a polynomial, and
E'=, Hi/(i +m), where m is an integer, are given. A method to automate these results is
presented. This is achieved by using Moenck's algorithm and by exploiting the relationship
between polygamma functions and harmonic numbers.

1. Introduction

We are interested it developing an interactive system which will aid both experts and
students in the analysis of algorithms. This system should be capable of assisting analysts
in dealing with summation of functions, solution of recurrence relations, manipulation
of generating functions, and asymptotic analysis. As a first step, one of the members of
our research group has implemented several basic tools including Gosper's summation
algorithm, a definite summation procedure for binomial sums, a series of methods for
determining the convergence of infinite sums, and several basic techniques for solving
large classes of recurrence equations [3].

The indefinite summation problem is concerned with finding closed form solutions
S(n) to

'1

S(n) - S(0) = f(i),
i=1

where f(i) is an arbitrary expression from some class. Three procedures have been
developed, each of which is capable of producing results the others cannot. Moenck's
algorithm considers the case where the summand, f(i), is a polynomial or a rational
function and expresses the transcendental part of the answer in terms of polygamma
functions [11]. Karr's procedure poses the problem in an algebraic way and then derives
conditions for summability [6,7]. Starting with a field of constants, larger fields are
constructed by the formal adjunction of symbols which behave like solutions to first

order linear equations. Then, in these extension fields, the difference equations are posed
and solutions are sought. Gosper's procedure works whenever S(n) = = f(i) is such
that S(n)/S(n - 1) is a rational function of n [1,2].

One is usually concerned with definite sums in the analysis of algorithms. When
the indefinite sum is known, the problem is trivially scived. To complicate matters, we
frequently encounter special classes of functions in the analysis of algorithms like bi-
nomial coefficients, harmonic numbers, and Fibonacci numbers. We have implemented
algorithms to solve many types of definite summation problems involving binomial coef-
ficients [4] and have considered the problem of deriving closed forms for the summation
of harmonic numbers [10].

The average number of comparisons to find the maximum of n items, is given by the
nth harmonic number, Hn = 1 + 1/2 + 1/3 +... + I/n. The expected performance of many
sorting algorithms is expressed in terms of these functions. Thus, we are motivated to
solve summation problems involving them. Graham, Knuth, and Patashnik [9] mention

* that it would be "nice" to automate the derivation of such formulas. Karr's procedure will
yield formulas, as a rational function of n and the symbol H", for the sums Et, Hi and

?=1 iHi. However, it will give no formula for the sum Eil Hili, since the generalized
harmonic number H(2) must be adjoined to the field. Gosper's procedure will not handle
harmonic numbers at all since they are not rational functions of n. Moenck's algorithm
cannot solve the sum Et= Hi since it involves a double summation.

In this paper, we will investigate a method to find closed forms for certain types
of summation involving harmonic numbers. This will be achieved by employing a rela-
tionship between harmonic numbers and polygamma functions and by using Moenck's
algorithm.

2. Summation of Harmonic Numbers

As defined in The Art of Computer Programming by Knuth [8],

Hn= 1 1 1 + "1 >1
2,= + +~..- 3 n> 1

k=1

It may seem at first glance that Hn is bounded, even when n has a large value, since we
are always adding smaller and smaller terms. But it is not hard to see that H. can get
as large as we please if we take n to be big enough. In a sense, H,, "just barely" goes
to infinity as n gets larger because it can be proved that the sum 1 + Jr + I +... + I-

stays bounded for all k > 1. The generalized harmonic numbers H1,nk) are defined as

H (k) 2 = ' . +.. + -, k > 1. (2)

From the viewpoint of realistic algorithm analysis and from the problems encoun-

13

tered in textbooks, we have good reason to categorize the commonly occuring sums for
expressions involving harmonic numbers into one of two cases. They are either of the
form

Zp(i)Hi, (3)

where p(i) is a polynomial in i, or of the form

f (i)Hi,(4)

where f(i) is a rational function in i.

Consider thc case when the sum is in the form of equation (3) and p(i) =arni"' +. +
ali + ao, ai E C. As long as we can work the sum for any power of i times a harmonic
number (i.e., t imH, m E N), we can also solve the problem of (3). On the other
hand, in the case of (4), we need to consider the rational function 1/(i + m), m E I.

Let us look at the sum h, H!k, where k E N. We first treat the smallest case, the
sum of harmonic numbers '= Hi. Writing E,=j 1/j in place of Hi and changing the
order of summation, we find that

n!= n n n = (n+l-j)

i=1 -~i =1
n. (n+i)_ n

=(n+1)E-.El
j=i3

.=1

-(n + 1)H, -n. (5)

Using the same rule of transformation of sums, we also see that
n n!2 = 1 n + 1 n- j

I n+1 n3=' 3=. ,.i=

'I __ f iE= E2 j2

= n 1 n 1~

j=1 j=1I

=(n + 1)//(2) - Hi. (6'

From (5) and (6), it is obvious that

nH!k) = (n + 1)H(') - I (- l), (7)

where k E N.

14

Next we consider Z .=1 i$ Hi, where m E N U {0}. We have seen the simplest
case, m = 0, before in equation (5). When m = 1, we can apply the same technique of
interchanging the order of sunmation to obtain

n n 1 n 1 n
EiHi= EiE-t= Z-Zi
i=1 i=1 j= = j=1 3 i=j

1 1 1) - 1)
E n(n+ i~ 1)

- 2 2

n(n +) H n n(n - 1)(8

2 4
This technique also works for the general case, i.e., summation of any power of i times a
harmonic number,

imHi = H i J i ns, (9)
i=1i=1 j=1 i i=1

where m is a non-negative integer. In a manner similar to the derivation of equations (8)
and (9), it can be shown that Est=, imHn(2) is of the form

Ht2) i n _ L im. (10)i=l j= -

In fact, equations (5) - (10) lead to the following theorem.

Theorem 1.

Is Is 1 j-1imH!') = Hn) i"- E E i- (11)
i=1i=1 j~ i=1

where m E N UO {0} and k E N.

Next we consider

t+ m

First let us treat the case when m = 0, Zn=l Hill. Again writing the definition of Hi
and transforming the sums, we have

n-H n1 n- 1 - 1 n

=T = 7 7= 7
i=1 I i=jz

15

n nh

= H.H - + Z
j=l 3 =

so

sO 2 $+ffn()
i=1

and
i 1 + H(2)). (12)

(11n

Now let us see what happens to = Hi/(i + 2).

n~ H, 1 1 n 1

S H,.22 - j+I
=1

3 1

,,I_ n-

j j= j--1

nH HH--n 1

= Ht +2I - +- 1) (1) -)

= H.+ 2 Hn - I Hn + H
(2)

-

Equations (12) and (13) can be generalized by the following theorems.

Theorem 2.

n H + 2It \ + () n 1 m-1
Hi=In+ "= (14)-

where m is a positive integer.

Theorem 3.

n H 12 n 1m 1

E mF2 = -_m + I4?m+n~ ~i=l+m Z-M 2i j

where m is a non-negative integer and n > m.

16

3. Polygamma Functions and Harmonic Numbers

Moenck's procedure is to follow, as closely as possible, the techniques used for the inte-
gration of rational functions. Using the method of summation by parts, this algorithm
represents the sum of a rational function as a rational part plus a transcendental part.
The transcendental part is expressed in terms of polygamma functions. Most of Moenck's
procedure can be traced back to Jordan's book on finite differences [5]. In this section,
we will explore some of the properties of polygamma functions and derive a relationship
between them and the harmonic numbers.

The polygamma functions are the logarithmic derivatives of the gamma function.
These functions are denoted by era(x), where

era(x) = Dm log r(x + 1), m > 1. (16)

Since

r(x + 1) = lim [(x +1)(x+)(x+n+2)]

we have
r n+2

log r(x +) = [log n! + (7" + 1)log n - E log (x + k)]
k=1

for all x.

Consider the case when m = 1.

01(x) = D log r(x + 1)

= lim og n - (x +
k--1

01(0) = log n - -v (v = Euler's constant). (17)

Let us apply the difference operator A, where Af(x) = f(x + 1) - f(x), to 01(x).

Abl(z) = DAlog r(x + 1)

= D log (x + 1)
= (18)

x+l

Now if we apply the inverse difference operator A- ' to (18), we have

-1 1 =b(

Since the inverse difference is the indefinite sum, by evaluating from 0 to x - 1, we obtain

X-11
= ¢(X - 1) -1(0).

i=0

17

By (1), the L.H.S. of the above equation is H, if x is an integer. So

01(n - 1) = -v + Hn, n 1. (19)

Next, consider the case when m=2.

0 2(X) =D Dfb(x)

n-oo E (x +-k)2]

CO 1
_ (x + k)2 ,
k1

4'2(0) = j = C(2) (C = Riemann zeta function). (20)
k=1

Again if we apply the difference operator A to 01(x), we get

=(1 -1
((+11)'X+

P2 ()=-1 -. +L +20

=02(0) - H (2). (21)

In general, we have the following theorem.

Theorem 4. For integers n > 1 and m > 1,

0m(n - 1) = 0km (0) + (-1)m-l(m - 1)! II(m). (22)

It is interesting to note that whenever m is even, ir.(0) = 1/2 B I (2,r)r/r! , where
B, is a Bernoulli number. For example, 02(0) = 7r2/6, 04(0) = 7r2/90, ... There is no
known formula for 0,m(0) when m is an odd integer greater than one.

4. Examples

The results derived above imply that when we want to find the closed form for a sum-
mation involving harmonic numbers, we perform the following steps:

i) Replace the harmonic number by its definition.

ii) Interchange the order of summation.

iii) Apply Moenck's algorithm to the inner sum.

18

iv) Apply Moenck's algorithm to the resulting sum.

v) Use the transformation (22) to convert the polygamma functions to harmonic

numbers.

We illustrate this procedure with two examples.

Example 1. Find the sum Ft' i4H(2).

n
4l2) 0

i=1 i=1 =1 2

jn1 . i .

We apply Moenck's algorithm to EJt' i4 to get

(s +i 4 + 1 n 31.4 1 -3

Applying Moenck's algorithm again to the product of 1/j2 and the above expression, we
obtain

(5 n+ 1 4 1n3 --- 2(0)1

- 1n +3n 1 on[2 _ n 1 1
1O 1 30 12 31O 0

Using the transformation (22) on this formula, we arrive at the answer,

(in 5 + - n + -in 3 1n n 11 -o2)+_n +n + 11 1 1 1H "
3 To n 20 1 + 3 0 2 n +-TO-

Example 2. Find the sum E&, i2 Hn+i•

n n = i =i
' -i2H, = Ei2 F,7

i=1 j
n i

= Hi [n + _)2n+)
= H. Ei2+ E . i2

+ 1 1.. [n(n +1)(2n+4-1) -(j -1)j(2j - 1] (23)_= 6= 1)]

i n +j t 6 6 "

Applying Moenck's algorithm to the second term of (23) yields

n(n+ 1)(2n + 1) 3)- 2_ 1
6 1 4
n(n + 1)(2n + 1)

6

19

Simplifying the above expression gives

n(n + l)((2+n-1)-2,(n-1)] n(on 2 + 9n - 1),

and using the transformation (22), we get

n(n + 1)(2n + 1) [2H - 2Hn] - !(1n2 + 9n -
6 13

Now combining the first term of (23) and the above expression produces the result,

n(n + 1)(2n+ 1) [21I2 - Hn] - 1(10n2 +9n - 1).
6 3

5. References

[1] R. W. Gosper, "Indefinite hypergeometric sums in MACSYMA," Proc. MACYSMA
User's Conference (1977), Berkeley CA, 237-252.

[2] R. W. Gosper, "Decision procedures for indefinite hypergeometric summation," Proc.
Nat. Acad. Sciences, USA 75 (1978), 40-42.

[3] M. B. Hayden, "Automated tools for the analysis of algorithms," Masters Thesis,
University of Rhode Island, Kingston RI (1986).

[4] M. B. Hayden and E. A. Lamagna, "Summation involving binomial coefficients us-
ing hypergeometric functions," Proc. ACM Symposium on Symbolic and Algebraic
Computation (1986), 367-372.

[5] C. Jordan, Calculus of Finite Differences. Chelsea, NewYork NY (1965).

[6] M. Karr, "Summation in finite terms," Journal of the ACM 28 (1981), 305-350.

[7] M. Karr, "Theory of summation in finite terms," Journal of Symbolic Computation
1 (1985), 303-315.

[81 D. E. Knuth, The Art Of Computer Programming, Vol. 1: Fundamental Algorithms
(Second Edition). Addison-Wesley, Reading MA (1973).

[91 R. L. Graham, D. E. Knuth and 0. Patashnik, Concrete Mathematics: A Foundation
for Computer Science. Addison-Wesley, Reading MA (1989).

[10] S.-M. Liu, "Symbolic expressions for summation of harmonic numbers," Masters
Thesis, Brown University, Providence RI (1986).

[11] R. Moenck, "On computing closed forms for summations," Proc. MACYSMA User's
Conference (1977), Berkeley CA, 225-236.

20

Algorithm and Implementation for Computation
of Jordan Form over A[xl,..., xM]

Nicholas Strauss
Departemento de Matematica

Pontificia Universidade Catolica
Rio De Janeiro, R.J., Brasil

Abstract.

I outline a sequential algorithm for computation of the Jordan form for
matrices in K = A[x,...,xm], with A an unique factorization domain with
separability. The nlgorithm has average cost (for K integers) of O(n4L(d)2').
I have implemented this algorithm in MACSYMA and it is currently distributed
as part of the Climax system.

Introduction.

The Jordan form is the generalization of the Eigen problem with respect
to a finite dimensional vector space over an algebraically closed field. Other
forms, the Smith or Rational, are useful as canonical representatives with re-
spect to the equivalence induced by similarity of linear transformations. Kan-
nan and Bachem [31 give a sequential algorithm for computing the Smith form
for integer nonsingular matrices, of cost O(n4 log2 (n)), for a matrix of dimen-
sion n. The algorithm relies on subcalculation of the Hermite normal form.
Recently, Kaltofen, Krishnamoorthy, and Saunders [2] have developed a paral-
lel probabilistic algorithm for computing the Jordan form using a Smith form
calculation. Their Smith form algorithm is in Las Vegas - RNC2.

Here I outline another sequential algorithm for computation of the Jor-
dan form for matrices in K = A[xj,...,xm], with A either the integers or
a finite field, more generally any integral domain with unique factorization
and separability. The algorithm has average cost of order O(n 4L(d)2) with
L(d) the length of the coefficients (assumed integral), with a worst case of
O(n12 + n9L(d)3). I have implemented this algorithm in MACSYMA, and it is
currently distributed as part of the Climax system. [7]

Algorithm.

Let J be a n x n matrix with coefficients in K.
Form Determinant(J - AI) = p(X,..., Xm, A).
Then the irreducibje factors of p(x,... , Xm, A) given by FACTOR are irreducible
over K[A]. Hence they are either of form pi(xj,..., Xm) irreducible over K,
or of the form pi(xj,..., x, A) irreducible over K'[AJ, with K' the field of
quotients of K.

One can form the algebraic closure CL(K') of the field K'. In this field,
the Jordan form exists. [5] Theorems 1 and 2 hold in this generality, thus
the algorithm works for matrices with coefficients in K. In practice, this is
dependent upon the zero-equivalence problem within RANK.

1. Compute the characteristic polynomial p(A) of J by computation of DET(
J-AI).

2. FACTOR p(A) into powers of irreducible polynomials over K'[A], p(A) =
ij=1 PiA)ri.

3. Form matrix polynomials pi(J), i = 1,... , k.
4. Use Rank Space decomposition on each pi(J) for i = 1, ... , k searching

from 1 to ri to find B,(pi(A)), the number of Jordan r-blocks for irre-
ducible factor pi.

5. For each eigenvalue Ai, for I = 1,... , ri, the number of Jordan r-blocks
will be B,(Ai,):= B,(pi(A))/ri.

6. Find eigenvalues, Ai, if possible.
7. Compute similarity transform and (optional) check if Jordan form is cor-

rect.

Rank Space Decomposition.

Let A be an eigenvalue. As is well known, letting M = J - AI,

6(0) = n - rank(M),

6(r) := rank(M") - rank(Mr+l)

- nullspace(Mr+l) - nullspace(Mr)

-j Z(A).
j>r

with Bj(A) is the number of j x j Jordan blocks for eigenvalue A. This formula
can be used with a binary search to determine B (A).

22

Search(rl,r2) :=Midpoint - 1/2(ri + r 2)

If r, - r2 E 2 then Searchl(rl, r 2)

else

If 6(rn) - 6(Midpoint) 0 0
then Search(r1, Midpoint)

If (Midpoint) - 6(r 2) 5 0

then Search(Midpoint, r 2)

Searchl(ri,r2) :=For i = r, + 1 thru r2 + 1 do

if 6(i-)- - (i)# 0
then let Bi(A) = 6(i - 1) - 6(i)

In general, we can per.orm Rank Space decomposition on irreducible fac-
tors of p(A) to find the number of j x j Jordan blocks for groups of eigenvalues.
This allows us to avoid finding the roots and increases the efficiency.

Theorem 1. Suppose Ai, 1, ... , Ai,ri are the roots of the irreducible factor
pi(A) of the characteristic polynomial p(A) of the matrix J. Then Rank Space
decomposition of pi(J) will give _ Bj(Ai,1).

Proof. p,(j) ~ e=1 @3lpi(bj(Ai,)) with bj(Ai,1) is Jordan form
for eigenvalue Ai,j, k is the number of irreducible factors of p(A), and s is the
largest Jordan block for Ail.

Each pj(bj(Aij)) is nilpotent. The t-powers of this matrix have column
(d(pja) ,j))rank t, since the super-diagonal (i, + t) for i = 1,, n, is d 0 0 for

the characteristic polynomial is separable. 0

Theorem 2. If A and /j are both roots of irreducible factor r(x) of a
characteristic polynomial of matrix J, over K, they share the same Jordan
structure,

B1(A) = B()

for j= 1,...,n.

Proof. Consider the splitting field L of r(x) as a Galois extension of the
field of fractions K' of K. Let a E GAL(L/K') be an element of the Galois
group of automorphisms of L which fix K'. Then a(J) = J. Apply a to
similarity equation,

p-.ljD

23

for J the Jordan form, and P has coefficients in L.

o(P-')(J)0t(P) = J.

Rearranging, a(j) is similar to J. Hence by uniqueness of Jordan form (up to
permutation of blocks), we have that A and p share the same Jordan structure.

Complexity.

The complexity of this procedure is the sum of the computation of char-
acteristic polynomial, factorization, and the Rank Space decomposition for
each factor. The algorithm is very efficient as showing diagonalizability, since
only two ranks must be computed for each irreducible factor. Total cost=
cost(DET)+cost(FACTOR)+cost(Rank Space decomposition). Cost(DET) is cost
of one elimination, over K[A]. Using Kannan's Hermite form algorithm, gives
cost 0(n 4L(d)2). Cost(FACTOR) is cost of a univariate factorization of charac-
teristic polynomial of degree n (assume K is integer riig). The average cost is
0(n 3log(n)3log(p)) using Rabin's randomized modification of Berlekamp's fac-
toring algorithm. The worst case is 0(n12+n9 L(d)3) using the Lenstra,Lenstra,
and Lovasz factoring algorithm. Finally, the cost of Rank Space decomposition
is 0(n4).

Theorem 3. The cost of rank space decomposition
is bounded by n 4 for K integers and base field operations of unit cost.

Proof. Matrix multiplication over K has cost 0(n 2), hence the sequential
cost of matrix powering is 0(n 2log(n)). In the worst case, the whole rank
space must be searched giving a cost of O(n3log(n)).

The rank space decomposition technique will take logarithmic time to
search the rank space, which is ri. One rank calculation costs 0(n 3), for K
integer ring. Thus the technique for one factor pi(x) will cost n 3log(r,).

The complete cost will then be

k k

En3log(ri) = n3log(H ri).
i=1 i=1

But ii = n. Since log is an increasing function, it is enough to maximize
k k

fi7i ri given the constraint - ri = n. By the geometric-arithmetic mean
k)Ilk <1 kinequality, (flj= ri)' < - l ri, or log(j=jl ri) <_ k log(-.) :_ a. Hence

the cost is bounded by,

< nk log() <

24

k is the number of distinct irreducible factors of the characteristic
polynomial. El

In the average case, the characteristic polynomial computation dominates
the algorithm cost. In the worst case, however, the factoring computation will.
This analysis is for integral ground ring, for enlarged rings the computation
will become significantly more costly, due to the rank computations needed
over the ground ring.

Similarity Transform.

To compute the similarity transform matrix one simply solves the eigen
equation, for each height-one eigenvector, then computes the cyclic vectors
which span each eigenspace. Again by Galois theory, conjugate eigenvectos
correspond with conjugate eigenvalues. Hence one solves the set of linear
equations,

(J - \ ei= 0,

over K[A]/p,(A) for the unknown ei as 1 < i < k. The cyclic vectors (or
height-a) are found by computing,

e (:= (J-)%.

The complete set of height-ce eigenvectors ef' for 1 < i < k and 1 < I <
deg(pi(,\)) is then found by the appropriate substitution for A. One point is
worth mentioning. The eigen equation introduces degrees of freedom for each
eigenvector. In the implementation, each degree of freedom is preserved as a
new parameter ri. Hence the similarity transform has entries in K[Ai,][rl, r2 ,
... ,r, with 1 < M:5 nv for v the number of jordan blocks total.

Conclusion.

Consider the primitive element w which can generate the algebraic exten-
sion, K(w) = K(A)i,). Then computations involving the similarity matrix can
be performed over K(w)(ri, r 2,... , rl,). However, computations using (or to
find) a primitive element are costly. [6] Note that computations with the Jor-
dan matrix J = (=b(pi(A)) can be performed for each of the direct summand
over K[A]/pi(A), avoiding the use of a primitive element.

References.

1. Buchberger B., Collins G.E., and Loos R.,"Computer
Algebra:Symbolic and Algebraic Manipulation", Springer, Wien, 1982.

25

2. Kaltofen E., Krishnamoorthy M., and Saunders B.D., "Fast Parallel Algo-
rithms for Similarity of Matrices", SYMSAC 1986, Proc. of 1986 Sympo-
sium on Symbolic and Alg. Computation, July 21-23, Waterloo, Ontario,
B. Char ed., 1986, ACM.

3. ibid.,"Fast Parallel Computation of Hermite and Smith Forms of Polyno-
mial Matrices", SIAM J.Alg.Disc.Math., vol. 8, no. 4, October 1987, pp.
683-690.

4. Kannan R., Bachem A.,"Polynomial Algorithms for Computing the Smith
and Hermite Normal Forms of an Integer Matrix", SIAM J. Computing,
vol. 8, no. 4, November 1979, pp. 499-507.

5. Lang S.,"Algebra", Addison Wesley, Reading, Massachusetts, 1974.
6. Najid-Zejli H.,"Computations in Radical Extensions", in Proc. Eurosam

84:Springer Lecture Notes in Computer Science 174, Springer-Verlag, Ber-
lin, 1984, pp. 115-122.

7. Strauss N.,"Jordan Form and Eigen Finite Field", The Macsyma
Newsletter, Symbolics Inc., Cambridge, Massachusetts, October, 1985.

8. ibid.,"Jordan Form of a Binomial Coefficient Matrix over Zp", Linear
Algebra and Its Applications, 90:65-72, no. 7, Elsevier.

26

Fast Group Membership Using a Strong Generating Test
for Permutation Groups

Gene Cooperman and Larry Finkelstein* Paul Walton Purdom, Jr.

College of Computer Science Department of Computer Science
Northeastern University Indiana University
360 Huntington Ave. 101 Lindley Hall
Boston, Mass. 02115 Bloomington, In. 47505

Abstract. Many important algorithms in computations with permutation groups require an
efficient solution to the group membership problem. This requires deciding if a given permuta.
tion is an element of a permutation group G specified by a set of generators. Sims [8] devel-
oped an elegant solution to this problem. His method relies on the construction of an alter-
native generating set for G known as a strong generati,.. et which can be easily used to test
membership of an arbitrary permutation in G. This algorithm was shown to have worst case
time 0(n 6). Later versions [1, 5, 6] have improved the theoretical worst case time but without
necessarily improving the performance in practice. An algorithm is presented here which has
an observed running time of 0(n 4) for all permutations groups for which it has been tested.
(The worst.case time for this algorithm is 0(n5).) The key idea is a new test [3] for whether
a set of generators is a strong generating set. Each call to this last test has worst case time
0(n 4). A further reduction in time is achieved by using a fast algorithm for finding reduced
generating sets. For groups with small bases, the running running time is 0(n 2), which is op-
timal for the data structure used.

1. Introduction

Given a permutation group G acting on n letters defined by a generating set S, the group
membership problem is to decide if an arbitrary permutation is an element of G. Efficient al-
gorithms for solving the membership problem are crucial for many important group computa-
tions. Sims [8] gave the first polynomial time algorithm for solving this problem. His algorithm
has worst-case time 0(n6), but it is quite practical when a small base is present. Since then
Knuth [6] and Jerrum [5] have developed practical algorithms with worst-case times of 0(n 5).
The algorithm of Babai, Luks and Seress [1] has worst-case time 0(n 4 logc(n)) with a large con-
stant coefficient. Their algorithm introduces several ideas of theoretical interest. A variation on
Sims' original method, based on coset enumeration, is presented in [7].

Most algorithmic solutions to the membership problem identify a collection of subsets
{LU,..., Uk} of G and then attempt to express g in the factored form g = gkgk-1 "" "gl, where
each gi E Vi, 1 < i < k. Each Ui arises as a set of (right) cosets of G(+1) in G(O, where

G = G(1) _ G(2) D .. - D G(k+l) = {e} is a chain of subgroups of G. If the attempt to express g
in this form fails, then g cannot be a member of G. Generally speaking, if Ui is a set of distinct
coset representatives for G(+) in G(W), then we call U = {U 1 , U 2,..., U,- 1 } a partial family of
cosets. U is said to be complete if each U is in fact a full set of coset representatives for G(i+
in G(W. A set S of generators for G is said to be a strong generating set if G(O = (S n G()) for
all i. If S is a strong generating set, then it is easy to construct a complete family of cosets.

The traditional choice for the subgroups G() is the point stabilizer sequence. Given a
fixed ordering a = al,. - - ,an of {1,2,...,n}, the ith element of this sequence is given by
G() = G, .,...,a..,}, the subgroup consisting of all elements of G which fix each of the points
ala2,. . ,ai, 1 < _n - 1. This paper uses this sequence.

The work of this author was supported in part by the National Science Foundation under grant
number DCR-8603293.

A set of m points such that only the identity element of G fixes each point is called a base.
All permutation groups have a base of size at most n - 1, and many have a very small base.
Most permutation group algorithms, including ours, find a small base if one exists. The base we
find is at most log 2 (n) times the size of the smallest base. We analyze running times in terms
of n, the number of points, and in, the size of the base found by the algorithm.

In (3], we introduced the notion of a basic generator. Basic generators are formed from the
generating set S for G and elements of the partial family of cosets. Subject to certain condi-
tions, we proved that the partial family of cosets is complete if and only if each basic generator
factors through the family. This is the heart of our strong generating test. This test can be ef-
ficiently implemented using the labelled branching data structure of Jerrum (5]. The first step
of our test is to build a labelled branching which contains all the orbit information for the point
stabilizer sequence implicit in S. This can be accomplished in time 0(nJSJ + n2), by using a fast
algorithm described in (3] and generalized in section 4. The strong generating test may then be
applied with respect to this branching and S in time 0(mn2 1Sl) where m is the number of in-
ternal nodes of the branching. If a small base is known in advance, then this time can be re-
duced to 0(m2 nS + n2). A specific idea for incorporating this test using the Schreier vector
data structure of Sims is described in (3].

In our initial implementation of an algorithm for constructing a strong generating set using
the labelled branching data structure, it was experimentally observed that the strong generat-
ing set is usually present early in the computation. The running time of the algorithm is then
dominated by the time to verity the strong generating property for this existing set of genera-
tors. An efficient strong generating test allows early termination. This is similar in spirit to the
approach taken by Leon [7] in his Random Schreier-Sims algorithm and suggests that the strong
generating test could be'of great value in many traditional implementations of group member-
ship algorithms.

There are two advantages to the labelled branching data structure. First, the labelled
branching data structure tends to "fill up" very rapidly, i.e., the partial family of cosets it de-
fines tends to be complete shortly after the computation has begun. Second, there is little ex-
tra overhead in applying the strong generating test, since the partial family of cosets will auto-
matically satisfy a necessary condition for use of the strong generating test. Our algorithm for
constructing a strong generating set runs in time 0(m2n2) in practice. The worst-case time is
O(m 3n2). When m = 0(n), the worst-case time is the same as previous practical algorithms,
but previous algorithms often have an average time close to the worst-case time.

2. Labelled Branchings
Let G be a permutation group acting on ft = {1,2,...,n} and let a = ala2,.. .,a,, be

an ordering of the points of f2. Define the point stabilizer chain of subgroups for G (with re-
spect to a) by setting G(i) = G(a,a,,) (the subgroup of G which fixes QJ,... ,ai 1 point-
wise), i = 2,...,n - 1, and G(1) = 0. A branching on Q1 relative to a i- a directed forest with
nodes a1,... ,an, in which each edge has the form (ai, aj) for i < j. A branching B is said to
be a labelled branching for G relative to a, if each edge (ci, aj) is labelled by a permutation oij
so that the following properties hold:

(i) orij E G(W and moves ai to a3 .

(ii) The set of edge labels of B generates G.

A labelled branching B is said to be complete if the following additional property holds:

(iii) If ak is in the G(i) orbit of ai, then there is a (directed) path in 6 from ai to ak.

Property (iii) ensures that the edge labels of 13 form a strong generating set for G relative to the
ordering a. For simplicity of notation, we will assume from now on that a is the identity ordering.

28

A labelled branching -can be implemented as an array of structures using O(n2)- storage.
Node labels are used to implicitly store the edge labels, and an edge label may be recovered at
the cost of one permutation multiply. Let r be the root of the connected component of-B con-
taining j. Associate with each node a node label T(j), where r(j) is the product of the path la-
bels from the root r to j if r 9 j, and is the identity if r = j. Since T(j)" 1 moves j to its root
r, we may recover the label for edge (ij) as aj = r(i)-lT(j). Furthermore, if there is a path
from k to j in 13, then r(k)-'r(j) is the product of the edge labels along the path from k to j.
This means that coset representatives can also be recovered at the cost of one multiply.

Let .6(13) denote the set of edge labels of 13.
Proposition 2.1. If 13 is a complete labelled branching for G, then E(13) is a strong generat-

ing set for G.

A labelled branching, 3', dominates 3 if G' = (6(B')),, G = (6(13)) and (G'() n 6(13')) ;?
(G() 6 (13)) for 1 < i < n - 1. As a-simple consequence of Proposition 2.1, a complete labelled
branching for G dominates all other labelled branchings for G.

Given a labelled branching B -for G, if i is connected to j in B, i < j, then we denote
the product of the edge labels along the (unique) path from i to j -by pij. As noted before,
Pq = r(Oi)TUj). wesy gfcosanbwrtn

Given g E Sym(fl), we say that g factors through B if g can be written

9 = PjL jk-'Pi2j2Pija,

where ik > .. > i2-> il.

Procedure Factor. Input: an element g E Sn and a labelled branching B for G. Output: true
if g factors through B, and false otherwise.
Initialize h to g
For i 4- 1 to n - 1 do if ill 6 i then

If there exists a path in 8 from i to ih then
Set u +- T(i)-7(ih); (u maps i to ih)
Set h 4- hu -1

Else return(FALSE)
Return(TRUE).

Note that Factor- may return false even if g E G, in the case where B is not complete. How-
ever, if B is complete, then Factor- returns true if and-only-if g E G.

If 3 is a complete labelled branching for G, then the set of internal nodes of 3 forms a base for
G. A base for-G is a set of points with the property that only the identity element of G fixes each
point in the set. If there are m internal nodes of B,then-the Factor algorithm takes time O(mrn);

The main operation on a labelled branching B for G is "sifting" a permutation g as de-
scribed by Jerrum [5]. Sifting is closely tied to factoring in the sense-that Sift does not trans-
form B if Factor -returns true. Sift-returns true if and- only if Factor -returns - true. Otherwise,
Sift returns false and we have the following situation. There-exists an index ik such that g, =

-1 -1 -1
g ij " 1P 2J2 P -l -, w h r > - > " " > 2 > i , g ' fi x e s 1 ,. , k --1 a n d th e re is n o p a th

in B from ik to k= i'. -Sift- then attempts to create a-new edge (ikiJk) with edge label g'. If
indegree(jA) = 0, then-this-can be done directly. However, if indegree(jk) 1,-then care must
be taken not to destroy the properties of the labelled branching. Thi. is accomplished by adding
a new edge with label g',-and then removing a newly redundant edge. A new-element derived-
from g' and the redundant edge label is recursively sifted into I lie the new labelled branching.
The recursive Sift-is-the key to maintaining the properties.of the labelled branching.

The next-two propositions describe the relationship betweema branching B and the branch-
ing B' obtained by sifting an element g-into B. (The proof is omitted.)

29

Proposition 2.2. If B' is the labelled branching resulting from sifting g into B, then B' dom-
inates B.

Proposition 2.3. If B' is the labelled branching resulting from sifting g into B and there is a
path in B from p to q, then there is a path in B' from p to q.

3. Basic Generators
The following discussion of basic generators is specialized for the labelled branching data

structure. It can be made independent of the particular data structure used to hold informa-
tion about the group [3].

Let S be a set of generators for G with e 0 S and let S(') = SnG(), 1 < i < n - 1. We say
that the branching B is fully augmented for S, if for each j E i(s 4), 1 < i < n - 1, there is a
path in B from node i to node j with the associated path product an element of (s(i)) and each
path product in B arises precisely in this way. In this case, (6(B)) 9 (S). The inclusion is not
always strict. If S is a strong generating set for G, then clearly a labelled branching fully aug-
mented for S is complete for G. In section 4, we will show how to construct a branching which
is fully augmented for S in time O(ISIn + n2).

For each pair of points (i,j) with i < j, i connected to j in B, let pii be the product of the
edge labels along the path from i to j. If this path has length 1, then pj, is just an edge la-
bel oij and we identify it in this way. Let U be the set of all such products, which we call path
products. Define the set T = T1 U T2 of basic generators of G relative to S and U as follows:

(Ti) ijjg, g E G(U+ 1), or
(T2) Pijgka, where an edge label arii, exists with i < ii, either ii = j

or il is connected to j in B, and g E G(W) - G(1)

where g E S and p*j, ajj E U.
In [3] it is shown that ITI 5 (n - 1)JSI and that the following strong generating test for S

takes time O(ISImn + min(ISIm 2n, m 2n)).

Strong Generating Test.

(1) Create a labelled branching B fully augmented for S. (We will give a fast algorithm for this
in the next section).

(2) Factor each element of S through B. If any element fails to factor, then the test fails. (This
guarantees that B is a labelled branching for G.)

(3) If ISI > n - 1 then replace S by the edge labels of B.
(4) Factor each basic generator through B. If every basic generator factors then the test suc-

ceeds. Otherwise, the test fails.

4. Construction of a Fully Augmented Branching and Reduced Generating Set
Let S be a generating set for a permutation group. This section describes a procedure for

constructing (in O(ISIm + mn) time and O(ISjm + mn) space) a subset S' of S and a labelled
branching B fully augmented for S' which is also fully augmented for S. S' is first constructed
independently of B. Thus, if S is a strong generating set, then the routine can be used to con-
struct a reduced strong generating set.

We will describe the procedure and omit the proof that the algorithm is correct and the
time and space bounds are as stated. We use two intermediate data structures. I is an acyclic
(undirected) graph with each edge {i,j} labelled by an element oij E S which moves i to j and
aru =ai- 1. If k = min(i,j), then we do not require that oij E (S(k)). The set S' will consist
of the edge labels of 71. root is an array of size n giving for each i E fl the smallest node, root[i]

30

__!_____________ __

of I , such that i and root[i] are in the same connected component. The procedure proceeds
in a bottom up fashion decrementing i from n - 1 downto 1. After the ith iteration, the con-
nected components of I represent the orbits of (SC')), rootU] is the smallest node in the (S(I))
orbit containing j, and the product of the edge labels along the path from rootfj] to j repre-
sents an element of (S(i)) which moves rootj] to j. In particular, since root[i] = i, all the de-
scendants of i in B are known. Thus we are able to set the parent field of B, for all nodes j > i
with parent(j) > i. After these data structures have been built, we can use _T and the parent
field information already stored in B to compute the r fields of B.
Procedure Augment. Input: A set S of generators for the permutation group G. Output: A
subset S' of S and a labelled branching B with the property that B is fully augmented for both
S and S'. Intermediate Data Structures: I and root as described above.
[Build 27, root and the parent field of B.]

Initialize B to a trivial labelled branching on f (Vi,parent(i) 4- NIL)
Initialize 2 to a trivial labelled graph on a
Set S'4-- 0 and r,:[n] 4-- n
For i +- n - 1 downto L do

Set T +- S() - S(+1)
If T # 0 then

For j +- i to n do set closedj] +- NIL
Set root[i - i
For i +- i to n - 1 such that root[i'] = i' do

[Use breadth first search to merge the connected components of T under T.
Set open-set +- {i'} and closed[i'j +- TRUE
For j E open-set do

Remove j from open.set
[Check the image under T.]
For p E T do

Set k *- jP
If root[k] i i'

[A new generator is found.]
Add p to S'; delete p from T
[Update root to be compatible with p.]
For f i' to n do

If root[i] 5 root[P] then [true at least for i = k]
[Merge two orbits of 1:.]
Let m = min(root[t], root[tP]),

M = max(root[t], root[P]) and
M be the set of nodes in I connected to M

Foreach m' E M do
Set root[m'] - M
If parent(m') = NIL and m'= i then

Set parent(m') 4-. i in B
Add edge {, P} to I with labels at,A' = p, atp,t = p-1[Update open.set .]

Foreach j' E _ adjacent to j do
If closed[j'] = NIL then

Set closed['] +- TRUE and add j' to open.set
The three promised structures have now been created. It remains to assign r(j) for each

node j of 1. This is done by the following code fragment. Note that we require knowledge of
all descendants of i for i a root of B. This information is stored in an array descendants.
[Set the r fields of B.]

For j +- 1 to n do
If parentU] = NIL then set r(j) +- identity else set r(j) +- NIL

For i +- n downto 1 and parent[i] = NIL do
[Compute descendants for i.]
Set descendants[i 4-- TRUE

31

Forj - i+ I to n do
Set descendants[jj 4-- NIL

Forj 4-- i + to n do
If descendants[parent[j]] = TRUE then set descendants[j] 4- TRUE

[Use breadth first search in Z to compute r(j).]
Set open.set 4-- {i}
For j E open..set do

Remove j from open.set
Let ,7 be the set of nodes adjacent to j in X
Foreach k E 3' such that descendants[k] = TRUE do

If r(k) = NIL then set -(k) -r(j)rjk and add k to open-set

5. Two Algorithms for Constructing Strong Generating Sets

A crucial step for group membership is obtaining generators for G('+1) from generators for

G(i). The first step is to construct a set of coset representatives for G(Y+1) in GYi). This set is in

one-one correspondence with the points in the orbit iG(). Both can be found by a simple tran-
sitive closure argument. Generators for G(i+l) may then be constructed by an application of
Schreier's Lemma [4, Lemma 7.2.2]. This may stated in more generality as follows.

Proposition 5.1. (Schreier's Lemma) Let G = (S), and U be a set of coset representatives for
H in G. (We assume that e E U.) For each 9 E G, let y be the (unique) element of U such that
Hg = HY. Set T = {(hg)(g) - 1 : h E U,g E S}. Then T generates HI.

The machinery necessary for the first algorithm has now ben developed. This algorithm is
a generalization of the one first presented by Jerrum [5]. The generalization has the advantage
that it may complete early. Further, the subprocedure Augment is new, and can accelerate the
convergence to a complete labelled branching. Early completion is a novel feature, which will
be exploited only in the more sophisticated algorithm to follow.

Completion Algorithm (simple version). Input: a list S of permutations from S., with
G = (S). Output: a complete labelled branching B for G. Auxiliary Functions: Pt-stabilizer(B, i)
returns a list of edge labels of B which fix 1,... ,i - 1. These are the edge labels of B of the
form oik with parent(j) > i. Augment(S) assumes that (S) = G(), and sifts into B those cie-

ments of S which move i to j E iG') and for which i and j are not yet connected in B.

[Initialize.]
Initialize a branching 8 to be the trivial branching
Sift each generator of G onto B [This guarantees that 6(B) generates G.]

[Main loop.]
For i +- 1 to n - 1 do

If i is not a leaf then
[Augment B.]

Set S + Pt-stabilizer(B, i)
If S = 0 then return(B) [the remaining vertices are leaves]
Augment(S) [modified B dominates old B

[Sift generators for G(i+I).]
Set U +- the set of path products in B starting at i
Sift into B all the Schreier generators for G (i+) using S and U

[At this point, 6(B) n G0+1) generates G(I+1), see section 2.]

Coming into the main loop, we know that the edge labels of B which fix 1,..., i - 1 generate
G(). In order for B to be a complete labelled branching, we require that if j = il for some
a E G() then there exists a path in 3 from i to j. This is accomplished by Augment. Proposi-
tions 2.2 and 2.3 then guarantee that the final branching will retain a path from i to j.

The second version of the completion algorithm incorporates the strong generating test and
reduced generating sets. A key procedure is Reduce-Gen. The input to Reduce-Gen is the
branching B and the current level i. Let S be the edge labels of B which fix 1,.., 1 - i (and

32

which generate G(0). Reduce-Gen calls augment(S) which returns a subset S' of S and a labelled
branching B' which is fully augmented for S' and also for S. Ideally, we would like B' to be a com-
plete labelled branching for Gf'). This can be verified by using the strong generating test with re-
spect to S' and V3. However, before this test is applied we perform two preliminary steps. We use
the notation a,, and parent'(i) to distinguish edge labels and parent fields in B' from those in B.

The first step is to update B with the orbit information contained in V3. This is accom-
plished by checking in B' for each non-root node k, whether parent'(k) = parent(k). If not, then
we set j = parent'(k) and sift 'k into B. After this step is accomplished we double check that
for each non-root node k, parent'(k) = parent(k). If there is a node k > i with the property
that k > parent(k) > parent'(k), then B' cannot be complete and so we call Augment again
and obtain a new S' and W3. We eventually complete this phase and move on to the next step.

We now want to ensure that the edge labels of B (and hence S') generates G(i). Thus we at-
tempt to factor each element of S through V3. If each element factors through then we are ready
to begin the completion test. Otherwise, we take the residue or of a o E S which didn't factor and
sift a ' into B and repeat starting with the first step above. By construction, for a' E G() - G (+1),
(i, iP) was not an edge of V3. Since B' and B have the same graph structure, (i, i') is not an
edge of B, and sifting a' must yield a new labelled branching which strictly dominates the old B.

At this point, we can apply the completion test directly to S' and V3. However, the follow-
ing alternative appears to be more efficient. Copy B onto V3. Since each edge label of B fac-
tors through the old B', we know that the new B' and old S' satisfy the properties for the com-
pletion test. Now first sift into B the basic generators of (B', S') (for level i), which are also
Schreier generators. If they all sift into B (equivalently factor through B), then finish the com-
pletion test by attempting to sift the remaining basic generators of (B', S') through 13. If any
fails, i.e. Sift returns false, then sift into B, the remaining Schreier generators for G(+1) formed
by using (B', S'). Note that we choose to call Sift rather than Factor, since if Sift fails, then it
performs positive work towards completing the branching.

The motivation for the above algorithm is to delay as long as possible the decision whether to
sift Schreier generators or basic generators for the completion test. In empirical studies, the first
time the algorithm commits itself to applying the full completion test, it almost always succeeds.

Completion Algorithm (sophisticated version). Input: A positive integer n and a set S
of generators for a subgroup G of Sn. Output: A complete labelled branching B for G. Auxil-
iary Functions: Sift and Reduce-Gen (which itself uses Augment).

[Initialization]
Let B be an empty branching of degree n
Sift each element of S into B
[Main loop.]
For i +- 1 to n do

Set (S', B') *- Reduce-Gen(B, i)
Copy B onto B'
Let Schreier(i) be the Schreier generators for G(s+I) formed from B', S'
Let Basic(i) be the basic generators formed from B', S1
Set continue-test +- TRUE
[Sift all Basic generators which are also Schreier generators into B.]
Foreach a E Schreier(i) n Basic(i)

If not Sift(a, B) then set continue-test 4- FALSE
If continue-test then

Foreach a E Basic(i) - Schreier(i)
If not Sift(c, B) then goto("Test Failed")

Return(DONE) ["Test Succeeded"]
"Test Failed": [Continue sifting in Schreier generators.]
Foreach a E Schreier(i) - Basic(i) do Sift(oi, B)

33

Clearly, one does not have to explicitly construct the sets Schreier(i) and Basic(i). Finding
the elements in the three sets Basic(i) n Schreier(i), Basic(i) - Schreier(i), and Schreier(i) -
Basic(i) can be done on the fly. In the section on measurements, the loops over Basic(i) ni
Schreier(i) is called the common part, the loop over Basic(i) - Schreier(i) is called the comple-
tion part and the loop over Schreier(i) - Basic(i) is called the Schreier part.

Procedure Reduce-Gen. Input: A labelled branching B and the current level i. Output: A
reduced set of generators S' which generate G(i) (computed from the edge labels of B which
fix 1,... ,i - 1) 4nd a labelled branching B' which is fully augmented for S'. Side Effect: B
is modified so that the path information for paths starting at a node j > i coincides with
that for B'. Auxiliary Functions: Test-Orbits has input parameters B, B' and returns true if
parent(k) = parent'(k) for all non-root nodes k of B', and false otherwise. parent(k) refers to
B and parent'(k) refers to B'. Test-Generators has input parameters S, B, B' and returns true if
each generator factors through B'. Otherwise, Test-Generators returns false and has the follow-
ing side effect. If a E S fails to factors through B' and a = a p . Aj where ir > ... > il > i
and a' E G(ir+I) fails to factor through B', then we sift o' into B. (This adds a new connection
in B.) Augment and Sift are also used.

Repeat
Repeat

Let S be the edge labels of 8 which fix 1,...,i- 1
Let (S', B') +- Augment(S)
[S' is fully augmented for S' and also for S.]
[Update B.)
For k - i + 1 to n and k a non-root node of B' do

If parent(k) < parent'(k) then
Let j = parent'(k) and let p be the edge label for (j, k) in B'

Sift p into B
Until Test- Orb; ts(B, B')

Until Test-Generators(S, B, B')
Return(S',B')

6. Measurements
The running times for both the simple and the more sophisticated algorithm were measured

for a wide selection of permutation groups. The programs were tested on 187 sets of generators,
which generated about 178 distinct permutation groups with 125 distinct orders. In what fol-
lows it is convenient to refer to the input as a set of groups, even through strictly speaking it is
a set of generator sets. The complete set of groups and generators and the complete set of run-
ning times are available from the authors.

The measured running times were analyzed using three parameters: (1) n, the number of
points, (2) g, the number of coset representatives, and (3) rn, the size of the base. The value of
g is n minus the number of orbits in G('). For transitive groups this is n - 1, but our set con-
tains a few groups where g is much smaller than n. The value of m is between 1 and n - 1. Our
set of groups covers a wide range of values of m.

The running time of the completion algorithms depend on five factors: (1) the time to mul-
tiply a permutation, O(n), (2) the number of multiplications needed to factor a permutation, m
or less, (3) the number of coset representatives, g (on the first level, less on higher levels), (4)
the number of generators for G(), n - i or less on level i, and (5) the number of levels, m or
less. The product of these five factors yields a worst-case running time of O(n 2gm 2) (O(n 3M2)
after applying the inequality g < n). The completion test speeds up the simple algorithm by
reducing the fifth factor, m. So far as is known, the completion test does not improve the theo-
retical worst-case time, but in nearly all cases that were measured, the completion test reduced
the number of levels to 2 or less. The reduced generating set speeds up the simple algorithm by

34

reducing the fourth factor. It results in no more than min{m log2 (n - i), n - i} for level i, yield-
ing a worst-case running time of 0(ngm3 log2 (n)) (or 0(n 2m 3 log2(n)) using g < n), which is an
improvement for m < n/ log 2(n). For most of the multiplications in the completion algorithms,
the time to multiply permutations can be reduced to 0(m) if a base is known in advance, but
finding a base appears to be as difficult as the rest of the problem.

Groups are usually specified with a small set of generators (never more than 6 in our set of
groups). After the coset representatives are added, the generating set is often of size n - 1. The
first level of the completion algorithm runs much more rapidly if a small generating set is used
the first level. For some groups, most of the time is spent on the first level.

Table 1 shows the distribution of number of levels of Schreier generation used by the com-
pletion algorithm with the strong generating test. Completing with zero levels indicates that no
Schreier generators (other than those that were part of the completion test) were sifted, com-
pleting with one level indicates that one set of Schreier generators were sifted, etc. The group
that required 6 levels to complete was specially designed to require a large number of levels.
(This group had one generator with 7 disjoint cycles, and for 6 of the cycles the cycle length
was relatively prime to the product of the previous cycle lengths.)

level 0o 1 2 3 4 5 6 ITotal
cases 76 103 5 1 1 0 1 187

Table 1. Distribution of Schreier levels.
These results show that the branching is usually complete after a small constant number of lev-
els. This early completion is not caused by groups having a small base because 106 of the groups
had a base of 4 or more points, and 61 of them had a base of 10 or more points.

For each group, the common part was done at most one more time than the Schreier part.
The completion part was usually done once. Table 2 gives the distribution for the number of
times the completion part was done.

Icalls 0 1 2 3 , Total
cases 0 184 3 0 187

Table 2. Invocations of completion test.
The running times were measured for Pascal programs compiled by the Berkeley Pascal

compiler with optimization turned on, and running on a VAX8800. Table 1 shows that com-
pletion algorithm with the strong generating test requires only a fixed number of levels for
most groups. The observed running times for the simple algorithm were all less than 2.6n 2gm 2

microseconds. The observed running times for the sophisticated algorithm were all less than
6.Ongm max(m log2 (n), n - 11. Theoretical worst-case times would increase the second formula
by a factor of m, but this large set of data suggests that such cases are rare.

Table 3 shows the running time for each algorithm for selected groups, including those that
lead to the results of the previous paragraph. (The worst-case combinations are marked with
asterisks.)

Algorithm Simple Sophisticated
Group n m
PPL 2(32) 33 4 1.467* 0.233
C189 189 1 1.733 1.667*
B 4,12 48 11 0.967 0.500
J2 100 4 12.883 2.267
M24 24 7 1.550 0.433
Rubik's cube 48 18 23.267 3.600
Magic Domino 40 14 1.683 0.817

Table 3. Measured running times in seconds for various groups.

35

Several of the groups came in regular families. Table 4 gives formulas to statistically model

the observed running times as a function of n. The best integer power of n was selected based

mainly on a worst-case analysis and verified with the data. The coefficient was fit to the data.

All the algorithms had special code to recognize when the tail of the branching had become a

straight line. This code sped up the algorithms for the symmetric group but did not help in
other cases. There is a similar technique for alternating groups (based on recognizing when the

branching becomes a straight line with a fork at the end), but that technique was not used.

Algorithm Simple Sophisticated

Group n m

A, a a - 2 1.5n s 3.7n4

Ca a 1 49.n 2 6.n2log 2(n)

Da a 2 62.n2 9.2 log2(n)

S. a a - 1 0.3n 4 18.n 3

Table 4. Fitted running times in microseconds for families of groups.

The sophisticated algorithm is fast under a wide range of conditions. For groups with a
small base, it usually runs in time 0(n 2) with a small constant of proportionality. This is near-
optimal since a labelled branching has n2 - n entries (for a transitive group). For groups with
large bases there appears to be room for improvement.

One way that often quickly leads to complete a branching is to sift random products until the
branching does not change for several sifts 17]. However, if one wants to be sure that the branch-
ing is complete one still needs prove that the random sifting has lead to a complete branching.
The rapid completion of the sophisticated algorithm suggest that such approaches are unlikely
to lead to significant improvement unless they use a faster approach to prove completeness.

Acknowledgements.

The authors would like to thank Namita Sarawagi for progrmming early versions of many
of the algorithms discussed, and Cynthia Brown for many fruitful discussions.

References

1. L. Babai, E. Luks, and A. Seress, "On Managing Permutation Groups in O(n41logen)",

Proc. 28 IEEE FOCS (1988), 272-282.
2. C. A. Brown, G. Cooperman, and L. Finkelstein, "Solving Permutation Problems Using Rewriting

Rules", to appear in Proc. of the International Symposium on Symbolic and Algebraic Computa-
tion (ISSAC 88, Rome, Italy), Springer Verlag Lecture Notes in Computer Science.

3. G. Cooperman and L.A. Finkelstein, "Short Presentations for Permutation Groups and a Strong
Generating Test", submitted to J. Symbolic Computation.

4. M. Hall, Jr., The Theory of Groups, Macmillan, New York, 1959.
5. M. Jerrum, "A Compact Representation for Permutation Groups", J. Algorithms 7 (1986), 60-78.
6. D.E. Knuth, "Notes on Efficient Representation of Permutation Groups" (1981), unpublished

manuscript.
7. J. Leon, "On an Algorithm for Finding a Base and Strong Generating Set for a Group Given by a

Set of Generating Permutations", Math. Comp. 35 (1980), 941-974.
8. C.C. Sims, "Computation with Permutation Groups", in Proc. Second Symposium on Symbolic

and Algebraic Manipulation, edited by S.R. Petrick, ACM, New York, 1971.

36

Finite-Basis Theorems and a Computation-Integrated

Approach to Obstruction Set Isolation

(Extended Abstract)

Michael R. Fellows*, Nancy G. Kinnersleyt and Michael A. Langstont

Abstract. Recent advances in well-partial-order theory, especially the semi-
nal contributions of Robertson and Seymour, make tools available that establish
only the existence of polynomial-time decision algorithms. The finite-basis the-
orems that are the engine of these developments are inherently nonconstructive,
providing no effective means for capturing the obstruction sets on which these
polynomial-time algorithms are based. In +.his paper, we use a well-studied ma-
trix permutation problem to describe an approach to obstruction set isolation that
makes essential use of the computer in a mathematical proof. (In fact, the task of
identifying such obstruction sets appears to pose many "4CT-like" problems for
which computational assistance is vital.) We also discuss an approach based on a
computational "learning" paradigm that incorporates a fundamental component
of computer-aided obstruction identification with self-reduction to obtain known
polynomial-time algorithms that do not depend on the knowledge of an entire
obstruction set.

Key words. discrete computational mathematics, nonconstructive proofs, poly-
nomial time complexity, well-partial-order theory

AMS subject classifications. 68025, 68E10, 68K05

* Department of Computer Science, University of Idaho, Moscow, ID 83843. This author's re-
search is supported in part by the National Science Foundation under grant MIP-8603879,
by the Office of Naval Research under contract N00014-88-K-0456, and by the National
Aeronautics and Space Administration under engineering research center grant AGN-1406.

t Department of Computer Science, Washington State University, Pullman, WA 99164-1210.
This author's research is supported in part by the Washington State University Graduate
Research Assistantship Program.

I Department of Computer Science, Washington State University, Pullman, WA 99164-1210.
This author's research is supported in part by the National Science Foundation under grant
MIP-8603879 and by the Office of Naval Research under contract N00014-88-K-0343. A
portion of this author's work was done while visiting the Institute for Mathematics and
its Applications at the University of Minnesota, Minneapolis, MN, and while visiting the
Coordinated Science Laboratory at the University of Illinois, Urbana, IL.

1. Introduction
Nonconstructive methods based on advances in well-partial-order theory have

recently been employed to prove low-degree polynomial-time decision complexity
for a variety of combinatorial problems. Some of these problems were not previ-
ously known to be decidable in polynomial time at all; others were only known to
be decidable in polynomial time with algorithms having unboundedly high-degree
polynomial running times. A brief background is provided in the next section.
For more details, we refer the reader to [RS1-RS4] for the relevant advances in
graph theory and graph algorithms, and to [FL1-FL3] for sample applications of
these novel tools.

Unlike algorithms devised with traditional methods, in which search or op-
timization routines are almost always used to provide some form of "positive
evidence" for making a decision, algorithms based on applications of well-partial-
order theory rely instead on the existence of a basis of "negative evidence." Cu-
riously, all that is directly provided by the underlying theory is that the basis is
finite. That is, we are guaranteed a Kuratowski characterization as the founda-
tion for an efficient algorithm, but the proof of this is nonconstructive in that the
characterization itself is not provided!

How then does one isolate the basis (aka obstruction set) and hence a decision
algorithm? Since no compietely general method is possible [FL4], one goal is to
bring the enormous computational power now available to bear on specific prob-
lems. In this paper, we use the well-known GATE MATRIX LAYOUT problem
to describe one such approach that incorporates traditional proof techniques with
computation-based obstruction verification, and explain how the computer has
played a fundamental role in obstruction set isolation. We observe that an analogy
can be drawn between this approach and the proof of the Four Color Theorem:
computational assistance is essential for certain steps of the proof that require
exhaustive case-checking, but mathematical arguments are necessary outside of
these computationally intensive steps to delimit and structure the search space.
We also discuss a constructive "learning" strategy by which known polynomial-
time algorithms can be devised based on only partial knowledge of an obstruction
set.

2. Background: Nonconstructive Tools and Their Application

Graphs we consider are finite and undirected, but may have loops and multiple
edges. A graph H is less than or equal to a graph G in the minor order, written
H <m G, if and only if a graph isomorphic to H can be obtained from G by a
series of these two operations: taking a subgraph and contracting an edge. A
family F of graphs is said to be closed under the minor ordering if the facts that
G is in F and that H <m G together imply that H must be in F. The obstruction

38

set for a family F of graphs is defined to be the set of graphs in the complement of
F that are minimal in the minor ordering. If F is closed under the minor ordering,
it has the following characterization: G is in F if and only if there exists no H in
the obstruction set for F such that H <, G.

Theorem 1. [RS4] Any set of graphs contains only a finite number of minor-
minimal elements. That is, graphs are well-partially-ordered by <m.

Theorem 2. [RS3] For every fixed graph H, the problem that takes as input a
graph G and determines whether H <m G is solvable in polynomial time. That
is, graphs under <m possess polynomial-time order tests.

We term a well-partially-ordered set with polynomial-time order tests a Robert-
son Seymour poset, or RS poset for short. Remarkably, Theorems 1 and 2 guaran-
tee only the existence of a polynomial-time decision algorithm for any minor-closed
family of graphs. It has been shown that Theorem 1 is independent of constructive
axiomatic systems and, indeed, any proof of Theorem 1 must use impredicative
arguments [FRS].

An interesting feature of Theorem 2 is the low degree of the polynomials
bounding the decision algorithms' running times. Letting n denote the number
of vertices in G, the general bound is 0(n 3). If F excludes a planar graph, then
the bound is 0(n2). These polynomials possess outrageously large constants of
proportionality, rendering them impractical for problems of any nontrivial size
[RS2].

For an application of Theorems 1 and 2, and to define an illustrative problem
that will be addressed in the remainder of this paper, consider GATE MATRIX
LAYOUT [DKL]. From a practical standpoint, this combinatorial problem has
been the focus of much recent attention, arising in several VLSI layout styles
including gate matrix, PLAs under multiple folding, Weinberger arrays and others.
From a more theoretical perspective, this problem has recently been shown [FL4]
to be identical to that of determining the path-width of a graph, an important
structural metric in the Robertson-Seymour theory [RS1]. Formally, we are given
an n x m Boolean matrix M and a positive integer k, and are asked whether we
can permute the columns of M so that, if in each row we change to * every 0 lying
between the row's leftmost and rightmost 1, then no column contains more than
k ls and *s.

The general problem is NP-complete and no brute force polynomial-time
method is known even when k is fixed. Nevertheless, it has been shown that,
for any fixed value of k, an arbitrary instance can be mapped to an equivalent
instance with only two ls per column, then modeled as a graph on n vertices such

39

that the family of "yes" instances is closed under the minor order and excludes a
planar graph.

Theorem 3. [FL1] For any fixed k, GATE MATRIX LAYOUT can be decided
in O(n 2) time.

But what are the finite obstruction sets on which the last theorem relies? In what
follows, we shall focus almost exclusively on the fixed value k- = 3. As will be
seen, this case alone is sufficiently nontrivial and in fact surprisingly challenging.

3. An Assault on the k = 3 Case: The Structural Component
For k = 1, it is trivial that the only obstruction is K 2. For k = 2, it is

known that there are only two obstructions, namely, K 3 and S(K, 3) [BFKL,
FL1]. Thus one might hope that the obstruction sets grow with k in a predictable
pattern, eliminating a need for computational tools. Such optimism is quickly
shattered, however, when one considers the k = 3 case; it turns out that there
are 110 obstructions! Our proof of this is built on both structure theory and
computation. The former, as outlined in this section, is based on proving that the
search space for the obstruction set can be bounded using arguments that focus
on the structure of the graphs in the set. The latter, as discussed in the next
section, involves an efficient dynamic programming formulation and well-chosen
minimality tests to help identify the elements of the set. Together, this integrated
attack solves the problem.

We now list a few of our most useful results. Some of these help to identify
directly certain members of the obstruction set.

Theorem 4. If three (nondistinct) obstructions for k = 2 are connected by iden-
tifying a vertex of each with a distinct leaf of a ternary tree of height one, then
twenty distinct obstructions for k = 3 are obtained: ten trees, six graphs contain-
ing a single triangle, three containing two triangles, and one with three triangles.
Moreover, the ten trees so obtained are the only tree obstructions for k = 3.

Theorem 5. The obstruction set for k = 3 contains only five graphs that are not
outerplanar.

Other results help to identify local reduction and replacement rules that pre-
serve "Cyes" instances.

Theorem 6. Suppose G contains a vertex u of degree one adjacent to a vertex v
of degree four or more. If the edge (u, v) is contracted (equivalently, if the vertex

40

u is deleted), then the resulting graph is a "yes" instance for k = 3 if and only if
G is.

Theorem 7. Suppose G contains a triangle with vertices u, v, and w in which
only vertex w has degree three or more. If the triangle is replaced with S(K,3)
(that is, the three edges of the triangle are contracted and an arbitrary vertex
of S(K, 3) is identified with w), then the resulting graph is a "yes" instance for
k = 3 if and only if G is.

Many results can be generalized to arbitrary values of k.

Theorem 8. Suppose G contains a cycle with exactly one vertex of degree greater
than two. If the cycle is contracted to a triangle, then the resulting graph is a
"yes" instance for any fixed value of k if and only if G is.

This makes it possible to reduce the number of graphs that need to be con-
sidered, so that more powerful statements are possible.

Theorem 9. When embedded in the plane, no obstruction for k = 3 has more
than four internal faces.

The proofs of these kinds of theorems are often laborious, especially for those
that analyze the possible face patterns of obstructions. For example, the proof of
Theorem 9 alone requires over twenty pages [Ki]. But, the result is that we can
bound the search space for k = 3 obstructions.

By extensions of theorems such as those listed in this section, a significant
subset of the k + 1 obstruction set can be obtained in a systematic manner from
the k obstruction set, for any fixed k. Theorem 4, for example, can be extended in
this fashion. Interestingly, of the 110 obstructions captured and subsequently enu-
merated with the aid of t work described in the next section, at most 105 satisfy
a conjecture that was based on these extensions and that was long suspected to
be sufficient to enumerate all obstructions. This illustrates the difficulty of ruling
out the existence of "sporadic" obstructions without computer verification.

4. An Assault on the k = 3 Case: The Computational Component
Once a candidate graph G has been identified as a possible obstruction, we

encounter a task that is extremely time-consuming (even on the fastest computers
available), namely, determining whether G is truly an obstruction. In this regard,
we must of course answer two questions:

(1) is G a "no" instance and, if so,

41

(2) is every proper minor of G a "yes" instance?
To answer the first question, we must somehow consider the O(m!) possible

column permutations. Obviously, brute force alone is not enough. Furthermore,
for graphs that pass the first test, we must do a lot better than mere brute force
if we are to answer the second question as well!

In order to accomplish this task, we exploit what we already know from our
face-pattern analysis and trade space for time. In particular, we take advantage of
and improve on the dynamic programming formulation devised for this problem
in [DKL]. This gives rise to a time complexity figure of only O(m 22m). Our
algorithms are coded in Pascal and implemented on an IBM 3090-300E, with 12
megabytes of real (nonvirtual) memory used for the huge dynamic programming
tables required.

To perform the second step efficiently, observe that minor-minimal graphs
must be connected, so that we need only check single edge deletions and single
edge contractions (more complex operations and vertex deletions are unnecessary).
Furthermore, we are able to deduce from the structure theorems, a few of which
were mentioned in the last section, that the contraction of an edge on a pendant
path is equivalent to the removal of the pendant edge, so that only the edges of
faces need to be contracted.

We have tailored the dynamic programming formulation to take advantage of
structural features common to obstructions. For example, we know that no ob-
struction can contain a pendant path of length exceeding two. Moreover, whenever
there is a pendant path of length exactly two, then if there exists any satisfactory
permutation of the columns of the corresponding matrix, then there exists one in
which the edges of the path are mapped to adjacent columns. We can therefore
treat these edges as a unit when evaluating permutations (this is possible during
both steps). Similarly, whenever a triangle is encountered, we collapse the three
columns to which its edges are mapped to a single column with three ls (this
makes sense in the first step only).

The result is that, on a typical candidate obstruction with 13 vertices and
15 edges, less than 40 seconds of CPU time has usually been sufficient to verify
that an obstruction has been found. For a graph with 18 vertices and 20 edges,
a figure of around 30 CPU minutes has been more the norm. When we move
up to a tree with 22 vertices (and hence 21 edges), this task has generally taken
just over 2 CPU hours. (These figures reflect run times on actual obstructions.
Nonobstructions frequently take much less.) To get a feel for the way resources
scale, a k = 4 candidate obstruction with 24 vertices and 39 edges recently required
a little under 9 hours of CPU time to perform the first step alone; we are fairly
certain that this graph is an obstruction and anticipate that the minimality tests
needed for the second step will take approximately 120 CPU hours. Thus,.we are

42

~1

truly working at the cutting edge of feasible computation.

5. An Automated Learning System
We now outline a novel approach to deciding membership for a minor-closed

family of graphs. This scheme is a natural candidate for parallelization. (At
this time, the aforementioned astronomical constants associated with arbitrary
fixed minor tests preclude the implementation of such a system, even on the
fastest-available computers. Optimistically, however, we observe that much work
currently underway has reported that these constants can be drastically reduced.
See [FL4] for details.) The approach we shall describe is especially attractive in
light of the following two factors: (1) we have recently shown that there are more
than a million obstructions for k = 4 and (2) empirical evidence suggests that only
a handful of obstructions are needed in most applications. Thus, as k grows, we
find ourselves in a remarkable situation: it appears to get much harder to isolate
an obstruction set and at the same time it seems that much less than the full set
is required in practice.

Our system is composed of these three major subsystems:
(1) a decision component that establishes whether a satisfactory column

permutation may be possible,
(2) a construction component that attempts to produce an appropriate

permutation when the decision component has specified that it may
be possible, and

(3) a learning component that. is invoked whenever the construction
component fails.

Each invocation of the learning component is guaranteed to increase the knowledge
base, thereby improving the expected future performance of both the decision and
construction components.

If the decision component reports "no," then it is certain that no permutation
is possible. This component is simply a battery of minor-containment tests, one
for each known obstruction. If, however, it reports "yes," then either "yes" is
in fact the correct answer, or there is insufficient data in the system's knowledge
base to determine why "no" is instead the right response. That is, a "yes" answer
may merely reflect that not enough obstructions are known. Given a "yes" an-
swer, we next employ the construction component, which attempts to produce an
appropriate permutation with a technique known as self-reduction. Construction
proceeds by selectively modifying the iiput and repeatedly reinvoking the decision
component so as to isolate a satisfactory permutation when any exist. If the con-
struction should fail, then our knowledge base is missing at least one obstruction
and the learning component is invoked to find out why. The learning component
can even be brute-force in nature, as long as we are sure never to invoke it when

43

all obstructions are known.
Space restrictions rule out more details here, but the system we have suggested

inherently relies on a more general result, a simplified version of which follows.

Theorem 10. [FL4] Let F denote a closed family in an RS poset and suppose
the following are known:

(1) an algorithm that checks candidate solutions to the search version of F
in O(Ti(n)) time,

(2) order tests that require O(T2(n)) time,
(3) a self-reduction algorithm that requires O(T3(n)) time, and
(4) some decision algorithm (its time bound is immaterial).

Then an algorithm requiring 0(maxfT(n) , T2(n) T3(n)}) time is known that
solves the search (and hence the decision) problem for F.

As previously mentioned, some obstructions seem far more likely to be en-
countered in practice than others. To illustrate, we have reviewed a number of
real GATE MATRIX LAYOUT "no" instances for k = 3 from the VLSI liter-
ature. Interestingly, every one has contained as a minor K 4. Moreover, aside
from K4, only four other obstructions were found. Thus, from a purely practical
standpoint, the learning system looks promising.

To demonstrate how such a system might work, let k = 4, a value for which
only a handful of obstructions have been recognized (and one whose obstruction
set is so large that it is unlikely that all of its members can be isolated without
massive computation). Consider the family of instances presented in [DKL], where
it was shown that all previously-published greedy heuristics fail for values of k
that are within any constant multiple of the optimum. (Each instance in the
family has a "hard to find" k = 4 permutation.) Assuming the matrix has at
least seven rows, it turns out that the corresponding graph contains only three
vertices whose respective degrees each exceed three. Let us denote these three by
A, B, and C. A is connected to every vertex in the graph except B and C. B
and C are connected to every vertex in the graph except A. No other edges are
present. From this it follows that the construction component cannot change a
0 to a 1 in any row corresponding to a vertex other than A, B, or C, because
doing so would introduce the known obstruction K5. After the self-reduction is
completed, exactly 3m/2 entries have been changed from 0 to 1. At this time, the
resultant matrix enjoys the "consecutive ones property." It is now a simple task
to construct a k = 4 permutation.

6. Summary
We have presented a computation-integrated approach to the problem of

obstruction set isolation, using GATE MATRIX LAYOUT with k = 3 as our

44

archetypical example. We have also discussed a more general learning strategy
for constructivization of RS poset applications that we think may be a promising
topic for future study.

It is should be clear that, for problems of this magnitude, neither traditional
mathematics nor computational tools alone suffice: simply bounding the search
space leaves too many elements for the individual obstructions to be isolated by
hand; just boiling away nonminimal elements is fruitless in a crucible of unbounded
size. For the sorts of problems that are now posed by the recent advances in well-
partial-order theory, it is satisfying to see that mathematical analysis can work
hand-in-glove with the efficient use of computational methods.

References
[BFKL] R. L. Bryant, M. R. Fellows, N. G. Kinnersley and M. A. Langston, "On

Finding Obstruction Sets and Polynomial-Time Algorithms for Gate Ma-
trix Layout," Proc. 25th Allerton Conf. on Communication, Control and
Computing (1987), 397-398.

(DKL] N. Deo, M. S. Krishnamoorthy and M. A. Langston, "Exact and Approx-
imate Solutions for the Gate Matrix Layout Problem," IEEE Trans. on
Computer-Aided Design 6 (1987), 79-84.

[FL1] M. R. Fellows and M. A. Langston, "Nonconstructive Advances in Poly-
nomial Time Complexity," Info. Proc. Letters 26 (1987), 157-162.

[FL2] -, "Nonconstructive Tools for Proving Polynomial-Time Decidabil-
ity," J. of the ACM35 (1988), 727-739.

[FL3I -, "Layout Permutation Problems and Well-Partially-Ordered Sets,"
Proc. 5th MIT Conf. on Advanced Research in VLSI (1988), 315-327.

[FL4] -, "On Search, Decision and the Efficiency of Polynomial-Time Al-
gorithms," Proc. 21st ACM Symp. on Theory of Computing (1989).

[FRS] H. Friedman, N. Robertson and P. D. Seymour, "The Metamathematics
of the Graph Minor Theorem," in Applications of Logic to Combinatorics,
American Math. Soc., Providence, RI, to appear.

[Ki] N. G. Kinnersley, "Obstruction Set Isolation for Layout Permutation
Problems," Ph. D. Thesis, Washington State University, to appear.

[RS1] N. Robertson and P. D. Seymour, "Graph Minors I. Excluding a Forest,"
J. Comb. Th. Ser. B 35 (1983), 39-61.

[RS2] -, "Graph Minors V. Excluding a Planar Graph," J. Comb. Th.
Ser. B 41 (1986), 92-114.

[RS3] ,"Graph Minors XIII. The Disjoint Paths Problem," to appear.
[RS4] , "Graph Minors XVI. Wagner's Conjecture," to appear.

45

PRACTICAL DETERMINATION OF THE DIMENSION
OF AN ALGEBRAIC VARIETY

Andr6 Galligo - Carlo Traverso

Universit6 de Nice et INRIA - Universith di Pisa

INTRODUCTION

The determination of the dimension of an algebraic variety is a problem that, in principle,
can be solved in an algorithmic way. If the variety is projective, this can be made through
the computation of the Hilbert polynomial; if it is affine, consider a completion of the
affine variety; the completion may have larger dimension than the affine variety, but in this
case it may have irreducible components contained in the hyperplane at infinity. This can
be checked, and if this happens, a decomposition into irreducible components reduces the
problem to the other case. Moreover, if the completion of the affine variety is made with
respect to the affine immersion given by a standard basis (also called Gr~bner basis) with
respect to an homogeneous term ordering, no irreducible component may be contained in
the hyperplane at infinity. Hence, a standard basis computation is sufficient to decide the
question.

Another connected problem is to determine whether a variety is pure dimensional. The
problem is very hard, but in principle this too can be computed through an irreducible, or
an equidimensional, decomposition. [GTZ], [BGJ, [BGS]

The complexity of these algorithms is in general very high. Many computations seemingly
simple are practically impossible. In this case, one can use indirect alternative approaches.
In this paper we show a few of them, that have succeeded, or failed, in four hard examples.
These computations may provide a guide for the solution of other problems of the same
kind. For some of the computations, that need to repeat similar computations many times
(e.g. they may require to compute intersections with hyperplanes hundreds of times) we
have not completed the computations, but were satisfied to compute a few cases just to
show that the complete computation is possible and a different answer very unlikely: we
are interested in methods, not in the specific answer to a particular problem. We point also
that the trace methods described in [Trl] can be used in these repeated computations to
decrease the cost of the complete answer.

All the computations were made with the AlPi system, that is a system for standard basis
computation written in MuLISP under MS-DOS [Tr2]. Hence "possible" and "impossible"
computations are meant with respect to a quite small system, that can be used on any 640K
IBM-PC compatible computer. Actually, the computations were made on a computer with
an Intel 80836 processor, but the only difference with smaller MS-DOS computers would
be execution times.

Of course, on a larger computer some of the "impossible" computations could become
possible, but the suggestions for indirect computations remain useful.

Research with the contribution of Ministero della Pubblica Istruzione (Italy) and C. N. R. S.
(France).

THE EXAMPLES

Example 1.

(1.1) Z3Y2 + 4X2y2Z - xyZ2 + 288z'y 2 + 2O7X2 yZ + 1152xy 2z + 156xyz2

+ zz - 3456Z2 yi + 2O736xy2 + 19008zyz + 82944y 2Z + 432zZ2

-497664xy + 62208zz + 2985984x

(1.2) y 30 + 4V3t2 - y 2Zt2 + 4y 2t3 - 48y2 t2 _ 5yZt2 + 1O8yZt + Z2t

+ 144zt - 1728z

(1.3) - z 2z 2t + 4zZ2 t2 + Z3t2 + X3z + 156X2Zi + 207xZ2t + 1152xZi 2

+ 288z 2t2 + 432X~2 . + l9008xzt - 3456z2 t + 82944xt2 + 2O736zt 2

+ 62208xz -497664zt +2985984z

(1.4) yj~t3 _ Xy2t2 + 4y't 2 + 4yi2t3 _ 5zy 2t - 48y't 2 + Z2y + 1O8xyt

+ 144zy - 1728x

Example 2.

(2.1) - X3 y2 + W y 2z - xz2- 144Z2 y2 - 207X2yz + 288xV2 z + 78zyz 2

+ XZ3 - 3456X2 yi - 5184zy2 - 9504xyz - 432xz2 + 10368y2 z
248832zy +62208z -2985984x

(2.2) - X9Zt 2 + Z2z2 t2 - 6Z3 zt + 4x 2z 2t + 32zYt - 72Z2Zt2 - 87xZ2 t2

- A~ 2 - 8Z3 Z - 432X2 Zt - 414XZ2 t + 2592xZt2 + 864Z2 t2

- 1728x 2z - 20736zzt + 3456z2 j - 186624212 - 124416z
- 1492992zt - 2985984z

(2.3) X2 01 - 2Xy 213 + y3 t3 + 8X2ajt2 - 12Xy 2t2 + 4y3t2 - 24xyt3

+ 24y2t3 + 2OX2yt - 20xy2 t _ 160Zyj 2 + 96y2t2 + 128Zt3

+ 16x 2y + 96zyt + 23O4zt 2 + 1152xy + 13824xt + 27648x
(2.4) _~3 y2ZtI + 4y3 t2 - 2y2zt2 + 72y2t3 + 71yZt 3 + 213 + 288y2 t2

+ 360yZt 2 + 6212 + 1728yt 3 - 464zt3 + 432yzt + 8Z2t + 6912yt 2

- 4320Zt2 + 1382403 - 13824zt + 55296t2 - 13824z

Example 3.
Is the same as Example 2, but in the equation 2.4 in place of the monomial Z2t3 we have

a monomial z2

Example 4.

(4.1) Z+V+Z+t+u+v
(4.2) zy +yz + z+ tu+ Ux

(4.3) xyz + yzt + ztU + tuv + uvz + vzY
(4.4) zyzt + yztu + ziuv + tuvz + uvzy + Vzyz
(4.5) xyztu + -yztuv + zluvx A- tuvxy + uvxyz + vxyzt
(4.6) xyztuv- I

47

Examples 1 and 2 were suggested by H. Cohn, (private communication), and arise as
modular equations for special algebraic number filds, [Co], [CD]. Example 3 comes from
a misprint in the input of example 2, but we have kept it since it illustrates a different and
useful approach. Example 4 was popularized by J. H Davenport, but we were unable to
retrace its origin.

THE METHODS

Guessing the answer. The first point is: it is usually easier to prove that an answer is
correct than computing it directly. Hence it is important to guess the answer.

We obtain a guess for the dimension of an algebraic variety V intersecting it with random
linear varieties: if the dimension of V is n, then the intersection with n generic hyperplanes
is non-empty, and the intersection with n + 1 hyperplanes is empty. Taking random hyper-
planes instead of generic ones we obtain a guess. The computations can be made modulo a
prime number. Of course, we can only probabilistically guarantee that our guess is correct.
We repeat the computations with different hyperplanes and prime numbers: when we are
convinced of the correctness of the guess, n,.- can choose a method to prove that the guess
is correct.

In our four examples the guess is: Examples 1 and 2 have dimension 2, example 3 has
dimension 1, example 4 has dimension 0.

The direct computation. The direct computation consists in finding a standard basis of
the ideal I defining the variety. From this standard basis, we can compute the dimension
of V, since the dimension of V is equal to the dimension of the variety defined by the ideal
ITn(I) generated by the initial forms of I.

This is known if the ideal I is homogeneous or quasi-homogeneous (see [MM], [Gil.
Indeed, the Hilbert function of I is equal to the Hilbert function of In(I)).

If I is not homogeneous, and the term-ordering is compatible with the degree (i.e. mono-
mials of larger degree are larger), we can consider the ideal 7, obtained homogenizing a set
of generators of . We extend the term-ordering, considering the homogenization variable
to be smaller than all other variables. If the set of generators of I is the standard basis
of I, homogenizing them we obtain a standard basis of the homogeneous ideal 7, and 7
contains the homogenization of any element of I. Hence considering In(I) we can compute
the dimension of the projective variety V defined by 7.

Consider now the intersection V0 of V with the hyperplane at infinity. Its homogeneous
ideal 10 is obtained from 7 sending the homogenization variable to 0, hence the initial
ideals of I and 10 are the same. This proves that the dimension of V is one more than
the dimension of V0 , (the ambient space has one dimension more) hence V has no top-
dimernsional component at infinity, hence the dimension of V and V are the same.

In the case that the term-ordering is not compatible with the degree, but is compatible
with a positive weight, we have to consider the quasi-homogenization of the ideal, with the
same proof; and in the case that the term-ordering is not compatible with a positive weight,
(as the lexicographic term-ordering), one can find a suitable term-ordering compatible with
a positive weight such that the standard bases with respect to the two term-orderings are
the same.

To our knowledge, this theorem was independently proved many times, but was never
explicitly written.

This "direct computation" is the key to all proofs of dimension, but often it is com-
putationally impossible (or at least very difficult) to use it on a given ideal. Example
1 is a case in which this direct approach is possible with respect to the "homogerneous

48

reverse-lexicographic term-ordering." The initial ideal is generated by zy 2t2 , x3y2 , y3 t3 ,

y
3

zt
2

, X
2

V
2
zt, X

2
y3t, X

4
yi, y

2
Zt

4
, y

2
z

2
t

3
, XyZ

2
t

3
,

X 2
yZt

3
, Y

2
z

3
t

2
, XyZ

3 2
, z

2
yz

2
t

2
, Z

2
z

4
t,

Zy2z 3t, z 2yz 3t, X3z 3t, Zy3 z2t, X3yz2t, X4yz 2 , X5yz, xyzt 5 , yz 3t4, yz4 t3 , yzlt 2 , Zy~t,
X3z 2t4 , y6z 3t. Inspecting this set, we easily remark that no monomial in z and z alone
appears in the ideal, hence the variety defined by it contains the (z,z) plane (indeed, set-
theoretically is composed of 6 planes). Moreover no coordinate hyperplane satisfies the
equations, hence the dimension is 2.

An additional question that was raised by Cohn is the following: do any three equations
generate the ideal? Do any two equations define a surface?. The computation of the
standard basis of the ideal generated by three equations is not feasible, hence indirect
methods have to be used.

The answer is no to the first question, and yes to the second. The first question is answered
adding to both ideals (the original one and the one generated by three equations) a linear
form (e.g. t = 1) and computing the standard bases of the two ideals: they are different.
However, one can gess that the two ideals differ only by 1-dimensional components, since
adding two random linear forms the ideals coincide. This guess could be proved to be
correct checking sufficiently many pairs of hyperplanes (see the next subsection). The
second question is answered remarking that the original equations have no common factor.

Too many lines in mutual generic position cannot meet a space curve. We want to
prove that in example 1, the variety V' defined by the equations 2.1,... ,2.3 coincides with
the variety V defined by the full set up to a 1-dimensional subvariety. To prove this fact,
assume that they differ in a 2-dimensional subset S; then this subset would be composed
of components of the intersection of the first and the third equation, hence by a surface of
degree d being at most 25. Indeed, since the variety defined by the full set of equations
has degree 6 (computed by the basis of the initial ideal), d is at most 19. Consider now
sufficiently many sufficiently generic 2-planes Pi, pairwise meeting at one point at finite
distance, and such that Pi n V = Pi n V' (ideal-theoretic equality). This means that the Pi
do not meet S at finite distance, hence in the projective space they meet the closure of S at
infinity. If the configuration of the lines at infinity of the P, is such that no curve of degree
19 in the 3-plane at infinity can meet all of them, then we have proved that S cannot exist,
hence V and V' should coincide outside a 1-dimensional subset.

The precise number of such planes, and the meaning of genericity involved, can be found
with Schubert calculus. Let C be a space curve of degree 19. Consider the grassmanian
of lines in three-space, and the hypersurface R of lines meeting C. This is an hypersurface
of degree < 19 in the grassmanian, and using the postulation formula on the grassmanian
one sees that 20,2,2-221

12 = 16170 points in generic position cannot meet R.
This means that 16170 planes in generic position in the affine 4-space cannot simultane-

ously avoid the surface S. The genericity of the position means that the rank of a suitable
matrix defined by the Plficker coordinates of the planes is maximal. This last computation
can be either made modularly, or we can choose the planes in a systematic way guaranteeing
the genericity. The details of the proof, in the general case, will be shown elsewhere.

The whole of the resulting computation is extremely long, but any single step is inde-
pendent of the others (the parallel complexity is low).

Remark that this method can be used to prove that a variety has at most dimension 1:
it is sufficient to take V = 0, and V' as the variety under consideration.

In our case, the following method gives a far better answer.

Find a linear variety that does not meet the part at infinity. We are considering
example 1, limited to equations 1, 2, 3, and we want to prove that the corresponding variety

49

V' coincides with the variety V defined by all four equations up to a subset of dimension
1. We consider the variety V" defined by the first and the third equation. We compute its
standard basis, and we verify that its degree is 25, i.e. the corresponding projective variety
does not have a component at infinity. Now, a sufficiently generic 2-plane intersects V"
with multiplicity 25, hence does not intersect V" at infinity. Hence it does not intersect V'
at infinity, hence should meet every 2-dimensional component of V' at finite distance. If
the intersection of the plane with V' coincides with the intersection with V, then no extra
2-dimensional component can exist.

The 2-plane of equations z = x + y, t = z - y + 1 is sufficient to prove the result.

Intersecting with sufficiently many hyperplanes, lower bound. The second exam-
ple is more complicated, since the direct computation is impossible (with our software and
hardware, and also with some more powerful one). It is however possible to compute the
dimension indirectly. The dimension is at most 2, since the equations have no common
divisor (they even do not have common variables), hence their locus cannot have common
hypersurfaces. We want to show that the dimension cannot be 1 (nor 0: the y-axis is inside
the locus).

Let V be the affine variety defined by the equation of example 2. Assuming that its
dimension is 1, we can bound its degree: V is contained in a complete intersection of
generic linear combinations of the equations, hence, assuming that it is a curve, it has
degree at most 63 = 216. It follows that it can have at most 216 components: we already
have one, the y-axis. If we find 216 more hyperplanes not containing the y-axis and not
intersecting at finite distance (e.g. hyperplanes y = a) that meet V in a curve, we have
proved that V contains a surface. We have computed several of these intersection, with a
in the range -200 ... 200, and the intersection was a curve, and indeed a curve of degree
6 (V instead is of guessed degree 9). So 36 such intersections are sufficient to show that
V contains a surface. We did not compute 36 intersection, since we had more interesting
things to do, but the computation is surely feasible: computing a single intersection in that
range took less than 4 minutes.

Looking at infinitesimal neighborhoods. Still in example 2, we can show that the
y-axis is an irreducible component (indeed, with multiplicity 2). This can be made showing
that the tangent cone at the origin of the intersection of V with y = 1 is a double point
in the t-direction. The computation is almost immediate once you have a standard basis
for the intersection, and we have made this computation in the former section. In more
difficult cases one can use the tangent cone algorithm ([Mo]). The dimension of the tangent
cone at a point is equal to the dimension of the variety at this same point. We can use this
computation to give a lower bound for the dimension of a variety (we cannot exclude that
we have higher dimensional components far from the point). We have no hard examples of
successful applications of this criterion.

Intersecting with sufficiently many hyperplanes, upper bound: analizing asymp-
totes of codimension 2. We consider example 3; it contains the y-axis, and we want to
show that it cannot contain a surface (a pure 2-dimensional component). Let W be the
closure in the projective 4-space of this surface. It would be contained in the intersection of
the projective locus of the first two equations, hence its degree d would be at most 30 (or
indeed 29, since it has a linear component at infinity; with a closer analysis one can even
obtain better bounds).

We want to show that if we find at least d + 1 hyperplanes pairwise intersecting at finite
distance, not all of them parallel to the same 2-plane, and meeting the affine variety V in
a finite number of points, then W cannot exist.

50

For any such hyperplane H, W n H is contained in the hyperplane at infinity H0 , hence
it should contain a component of W n H0 (maybe with multiplicity, in such a way that the
degree of the intersection counting multiplicities is d). These components are at most d. If
H1 , H2 are two hyperplanes meeting at finite distance, thenH 1 Hiln H2 n Ho is a line without
multiplicity, hence they cannot both only contain the same component of W, that would
be a line with multiplicity 1 (unless W itself is a linear variety, and this is ruled out by
the condition that not all the planes missing W at finite distance are parallel to the same
2-plane).

It follows that any hyperplane in the collection should contain a different component of
W n HO, hence we cannot have more than d of them. In our example, it is not difficult to
find 36 such hyperplaes (we didn't, for the same reason expressed in the former example;
eaich computation is several minutes long) hence to prove that example 3 has dimension 1.

Counting points. Still in example 3, if we want to find that V contains other curves
besides the y-axis, we consider that it cannot contain more than 5 . 63 points (or even
(5. 62 - 1). 6 considering that it contains the y-axis); it is sufficient to count the points on
the hyperplanes (and on their intersections) to find more than that many points on V.

We now consider the third example; let V be the affine variety defined by the equations
4.1,... ,4.6 (it is non empty, since we can easily show points on it).

To prove that V has dimension 0, we consider the projective variety V obtained homog-
enizing the equations 4.i. We have different possibilities to prove that V has dimension 0.

Analizing the part at infinity. Let H be the hyperplane at infinity; if H nV = 0, then
V has dimension 0. This is unfortunately false in our example.

Avoiding the part at infinity. If the H n V n H' = 0, where H' is an hyperplane
not intersecting V outside H, then V has dimension 0. Unfortunately, this is false in our
example, since we can easily prove that H nV is composed of 5 curves (2 straight lines and
3 conics, intersecting variously).

Avoiding singularities at infinity. If we can find an hyperplane, meeting V n H in a
non-singular point, and not meeting V outside H, then V has dimension 0: dimension > 1
is ruled out since otherwise the intersection point should be common to two components,
the one at infinity, and the other at finite distance, having the point as asymptote. Unfor-
tunately this too is impossible, since we can easily see that every point of V lying in H has
multiplicity at least 6.

These methods beeing fruitless, we have tried another idea: we want to prove that the
irreducible components of V that meet H are contained in H (this leaves only points). The
three following methods follow successfully this idea in different ways.

Analyzing 1-dimensional asymptotes. Bound the degree of the one-dimensional com-
ponents. This allows to bound the number of hyperplanes in a pencil that do not meet
these components, (144 in our case: one verifies-with indirect methods!-that intersect-
ing all the equations of example 4 but the one of degree five one has a curve of degree
< 144 = 1 . 2. 3 . 4 . 6), unless an hyperplane of the pencil contains it. Hence computing
a finite number of hyperplanes we can settle the question. We have hence to compute the
intersection of V with hyperplanes of equation z - a, and if the intersection is empty for
144 values of a this means that the curves at finite distance are all contained in some x = b.
Since the variety is symmetric under permutation of variables, this settles the problem.
The computation was only partly done, but is completely feasible.

51

Analizing multiplicities. Look at the Hilbert function of the affine cone corresponding
to the projective variety at its vertex. If the multiplicity is equal to the multiplicity of the
part at infinity, then no other component of the same dimension can be present.

Study a neighborhood of the component at infinity. Prove that exists a neighbor-
hood A of H such that An V g_ H. The complementemy of any such neighborhood contains

only points, hence the question is settled.

The two last methods lead approximately to the same computations, and these were
completely performed. Hence we achieved the proof that V has dimension 0. We discuss
with some details the computation with the last method.

The projective variety V it: defined homogenizing the equations 4.i; this means that the
equation 4.6 has to be substituted by

(4.6*) ZYZtuv - wt,

where w is the homogenization variable (the other equations are already homogeneous).
The question being local, we can de-homogenize, i.e. we can take subsequently the open
sets x : 0, y = 0, etc.; by symmetry, it is sufficient to consider one of them, say m # 0, i.e.
we can add the equation x = 1.

Consider now the ideal I obtained adding to the equations 4.1,... ,4.5, 4.6* the equations
x - 1 and wk. If we prove wh E I for some h < k, we have proved wh(1 + w k -) E
(*, - 1); and this is precisely what we need, the open set A containing H being defined
by 1 + ibw' - # 0, and Wvh defining the hyperplane H.

The computations succeeds with k = 12 (indeed, it is clear that one can better try only
multiples of 6, hence this is the first case to try). Hence the proof is complete.

REFERENCES

[BG] D. Bayer, A. Galligo, Inverse systems and equidimensional decomposition of polynomial
ideals, (in preparation).

[BGS] D. Bayer, A. Galligo, M. Stillman, Computation of the primary decomposition of polyno.
mial ideals, (in preparation).

[Co] H. Cohn, An ezplicit modular equation in two variables and Hilbert's Twelfth Problem,
Math. of Comp. 38 (1982), 227-236.

[CD] H. Cohn, J. Deutsch, An explicit modular equation in two variables for Q[V(], Math.of
Comp. 50 (1988), 557-568.

[GPT] A. Galligo, L. Pottier, C. Traverso, Greater Easy Common Divisor and standard basis
completion algorithms, in "ISSAC 88," Lecture Notes in Computer Science (to appear),
Springer Verlag, Berlin-Heidelberg-New York, 1988.

[Gil M. Giusti, Combinatorial dimension theory of algebraic varieties, Journal of Symbolic
Computation (to appear).

[GTZ] P. Gianni, B. Trager, G. Zacharias, Gr6bner Basis and Primary Decomposition of Poly-
nomial Ideals, Journal of Symbolic Computation.

[MM] M. M61ler, T. Mora, The computation of Hilbert function, in "BUROCAL 83," Lecture
Notes in Computer Science 162, Springer Verlag, Berlin-Heidelberg-New York, 1983,
pp. 157-167.

[Mo] T. Mora, An algorithm to compute the equations of tangent cones, in "EUROCAM 82,"
Lecture Notes in Computer Science 144, Springer Verlag, Berlin-Heidelberg-New York,
1982, pp. 158-166.

[Trl] C.Traverso, Gr6bner trace algorithms, in "ISSAC 88," Lecture Notes in Computer Science
(to appear), Springer Verlag, Berlin-Heidelberg-New York, 1988.

[Tr2] C. Traverso, Experimenting the Gr6bner basis algorithm with the AIPi system, (submitted
to ISSAC 89).

52

-- ----

A Computer Generated Census of Cusped
Hyperbolic 3-Manifolds

Martin Hildebrand Jeffrey Weeks
Department of Mathematics 137 Fayette St.

Harvard University Ithaca, NY 14850
Cambridge, MA 02138

Abstract. In this paper, we describe how we used a computer to produce a census of cusped
hyperbolic 3- manifolds obtained from 5 or fewer ideal tetrahedra. We note some of the tech-
niques involved in writing and debugging the programs and give a brief summary of the results.

Introduction

We have used a computer program to produce a census of cusped hyperbolic 3-manifolds
obtained from 5 or fewer ideal tetrahedra. By census, we mean that we have found all such
hyperbolic 3- manifolds and that we have been able to identify them uniquely. We are also
able to identify certain characteristics of the manifolds.

A hyperbolic 3-manifold is a 3-manifold with a Riemannian metric such that each point has
a neighborhood isometric to a neighborhood in hyperbolic 3-space. We normalize the metric
to have constant sectional curvature -1. We also require that our manifolds be complete; i.e.
all Cauchy sequences converge to a point in the manifold.

Thurston has conjectured that every compact 3-manifold can be explained in terms of
eight locally homogeneous geometries. Hyperbolic geometry is one of these geometries, and
informally "most" 3-manifolds are hyperbolic 3-manifolds. Manifolds in the other seven ge-
ometries are generally well understood. Thus to understand 3-manifolds in general, one needs
to understand hyperbolic 3-manifolds.

Hyperbolic 3-manifolds may contain some things known as cusps. Topologically, a cusp
looks like a torus cross a half-open interval (or, in a non-orientable cusp, a Klein bottle cross
a half-open interval). One way to look at an example of a cusp is to consider the complement
of a knot in the 3-dimensional sphere. By complement, we are referring to the portion of the
3- dimensional sphere outside of the knot. In most cases, this complement is a hyperbolic
3-manifold. View a tubular neighborhood of the knot. A cusp is contained there; it is the
portion of the tubular neighborhood which is in the complement of the knot. Figure 1 shows
what a cusp looks like in the hyperbolic metric. One identifies opposite faces of the solid in
Figure 1 to create the cusp; note that this identification turns each horizontal cross-section
of the solid into a torus which corresponds to the boundary of some tubular neighborhood of
the knot. Figure I also shows a knot and where the cusp comes from in the complement. The
cusp is complete and has finite volume.

From a cusped hyperbolic 3-manifold, we can construct many other manifolds by a process
known as Delin fi'ling. Topologically, we can view the manifold as having a torus boundary
at the cusp, and we can attach the boundary of a solid torus to it. There are infinitely many
ways to attach the solid torus, and these typically produce different manifolds. This process

Figure 1

of Dehn filling, when applied to knot or link complements, can produce all oriented closed
3-manifolds. Most knot and link complements are hyperbolic.

We shall construct cusped hyperbolic 3-manifolds by identifying faces on objects known as
ideal tetrahedra. We pick 4 points on the boundary of hyperbolic space (i.e. on the sphere at
infinity). The edges of an ideal tetrahedron are formed by taking geodesics between all pairs
of these 4 points. The faces are taken to be the portion of a geodesic plane inside any ideal
triangle formed by 3 edges. It is known that the hyperbolic volume of an ideal tetrahedron
is finite and depends only on its dihedral angles, and this volume can be computed from
these angles. (This is quite different from our Euclidean sense of volume!) The volume of the
manifold can be computed as the sum of the volumes of the ideal tetrahedra from which it is
constructed.

For the census, we will want to consider all possible ways to glue faces on a specified
number of ideal tetrahedra, although we will want to take measures so that the computer can
rule out sets of gluings as being unable to produce cusped hyperbolic 3- manifolds without
checking each one individually. We use some properties of cusped hyperbolic 3-manifolds to
take these measures.

The definitive reference on hyperbolic 3-manifolds is (Th].

Some Things Already Known About Hyperbolic 3- Manifolds

For hyperbolic 3-manifolds of finite volume, there is a nice fact: for a given topological
manifold, there is a unique hyperbolic structure. This fact, known as Mostow's Rigidity
Theorem, enables one to obtain topological invariants of the manifold from the hyperbolic
structure. For example, the volume is such an invariant.

Jeff Weeks has written a computer program to compute the hyperbolic structures on
3-manifolds. This program starts with a triangulation of the manifold into ideal tetrahedra.
There are some equations which describe the gluings around an edge and which ensure that the
manifold is complete. The computer solves these equations via a Newton's method algorithm
to obtain the hyperbolic structure. The results are stored as dihedral angles of the ideal
tetrahedra. [We]

A hyperbolic 3-manifold may have different triangulations although all triangulations will
give the same hyperbolic structure, by Mostow's theorem. Thus the triangulation produced by
this program will not uniquely describe the manifold. One may obtain from this description
several invariants, such as the volume, which depend only on the hyperbolic structure, and
computer programs exist to compute them.

Identifying Manifolds

One would like to have a computer program to produce a "canonical triangulation" of the
manifold. Because one can triangulate a hyperbolic 3-manifold in more than one way, we need

54

to distinguish a canonical triangulation. We use the triangulation dual to the Ford domain.
(If you don't know what a Ford domain is, don't worry: Thei key point is the existence of a
canonical triangulation.) There is a computer program, knowiu as "canonize," which finds the
canonical triangulation. Occasionally special symmetries in a manifold will cause the hoped-
for canonical triangulation to be a canonical cell-decomposition which is not a triangulation.
In this case, the program arbitrarily triangulates the cells which are not tetrahedra. We then
use ad hoc methods to decide when two such ambiguous triangulations represent the same
manifold.

We need to consider how to distinguish between triangulations. We shall first describe
a method used to store the triangulation. This method is crAled the terse description. We
pick a tetrahedron as the base tetrahedron (and number it 0), and we number the faces from
0 to 3. We number the vertices according to which face th.y are opposite. We also have a
method for numbering the edges from the numbering of th,- faces. We then consider face 0
of tetrahedron 0. Either it can be glued to a face on a tetrahedron already included in the
description (in this case, only tetrahedron 0) or it is glued to a face on a tetrahedron not yet
included in the description. In the latter case, we add the tetrahedron to the description (and
give it the smallest whole number not already used to numbe," a tetrahedron). We label the
faces by taking the numbering on the old tetrahedron and refleeting across the common face.
For instance, if we are gluing a new tetrahedron onto face 0 of the old tetrahedron, then face 0
of the old tetrahedron is glued to face 0 of the new tetrahedron while vertices 1, 2, and 3 of the
old tetrahedron are glued to vertices 1, 2, and 3 of the new tetrahedron. On the other hand,
if we are gluing to a face on a tetrahedron already included in the description, we already
have a numbering of the tetrahedron involved. We need to consider how the faces are glued.
This can be described by reflecting as above to get the numbering of faces one would get if
the tetrahedron we are gluing onto had been new and then finding the permutation of face
numberings to get the actual face numberings which were defined when the tetrahedron was
added on. For example, if we glue face 0 of tetrahedron 0 to face 1 of tetrahedron 0 and we
identify vertices 1, 2, and 3 to vertices 3, 0, and 2, respectively, the permutation desired sends
0 to 1, 1 to 3, 2 to 0, and 3 to 2. We consider faces which have not already been glued until
all faces have been glued. The ideas behind the terse description are due to Bill Thurston.

If the triangulation has n tetrahedra, we need 2n bits to describe whether we glue onto a
new tetrahedron and n + 1 entries of the structure consisting of a tetrahedron number and a
permutation to describe the gluing for when we glue onto an old tetrahedron. For example,
consider this triangulation into 3 tetrahedra:
000110
0 2031
2 0321
2 2103
2 2031
Note that for computational convenience, each word is read from right to left. We consider
first face 0 of tetrahedron 0. The right-hand 0 in the first line tells us that we glue onto an
old tetrahedron. So we look at the first line of the information on old tetrahedra. It tells us
to glue to face 1 of tetrahedron 0 as described in the example above. Face 1 of tetrahedron 0
has been glued by the time we reach it and thus is not considered. Face 2 of tetrahedron 0 is
glued to a new tetrahedron. The new tetrahedron is numbered 1, and face 2 of tetrahedron
1 is glued to face 2 of tetrahedron 0. Face 3 of tetrahedron 0 is glued to a new tetrahedron,
tetrahedron number 2. Face 3 of tetrahedron 2 is glued to face 3 of tetrahedron 0. The
next face we consider is face 0 of tetrahedron 1, and it is glued to face 1 of tetrahedron 2.
We consider faces 1 and 3 of tetrahedron 1 and find that they are glued to faces 0 and 2 of
tetrahedron 2, respectively. Then all faces are glued and we have a triangulation.

One thing which still needs to be considered is that we must choose a base tetrahedron and

55

a numbering of the faces on the tetrahedron in some well-defined manner. Different choices
of base tetrahedra and face numberings generally produce different terse descriptions so we
would like to pick the base tetrahedron and face numberings in a canonical way. We use edge
classes. An edge class of an edge of a tetrahedron in the triangulation is the set of edges
glued to that edge (and includes the edge itself.) The size of an edge class is the number of
edges it contains. To pick a tetrahedron, we use the sum of the sizes of the edge classes of
the edges around a tetrahedron and we find the smallest sum to choose the tetrahedron. We
use the sum of squares of the sizes of edge classes to break some ties. We may have a tie
at the end, and then we consider each tetrahedron in the tie separately. For each (possibly
tied) tetrahedron, we also use the size of the edge classes to find a face numbering of that
tetrahedron. For each tetrahedron, we may have a tie of the face numberings. We compute the
terse descriptions for each (possibly tied) face numbering of each (possibly tied) tetrahedron
considered as the base tetrahedron. We then compare the terse descriptions and pick the
one which is lexicographically least. It's potentially a little bit cumbersome (we have to deal
with up to 24n choices), but it provides a way to pic& a well-defined base tetrahedron and
face ordering. We often refer to the final terse description as the terse description of the
triangulation.

Organizing the Census

We would like to have the computer generate all ways to glue n ideal tetrahedra to form
cusped hyperbolic 3-manifolds. There are several steps to organizing the census for n tetra-
hedra.

The first step is to figure out all possible pairings of faces that keep the triangulation
connected. For small values of n, this is easily done by hand, but for n > 5, this can be a messy
process and is best left to a computer. One way to view the face pairings is as a graph on
n vertices. Each vertex represents a tetrahedron, and an edge represents a face gluing. We
want our graphs to be connected and to have 4 edges leaving each vertex in the graph. One
can represent the graph as an n by n symmetric matrix with row and column sums equal to 4.
The diagonal elements must be either 0 or 2. We fix the diagonal elements and then generate,
via a recursive routine, all possible matrices satisfying that description. We discard matrices
representing graphs which are not connected. The problem is that some of the matrices may
represent the same graph with the vertices renumbered. We get the computer to consider
possible renumberings in la recursive way. Because there are many possible renumberings, we
search for ways to eliminate classes of renumberings. If we have a different number of O's,
l's, 2's, or 3's, we know the matrices can not be renumbered. We also quickly detect partial
renumberings which fail and do not continue the recursion. In the end, we have a list of all
possible face pairings.

The number of such graphs grows rapidly. For n between 1 and 7, there are 1, 2, 4, 10,
28, 97, and 359 graphs, respectively.

The next stage involves systematically working through all the possibilities of gluing the
2 faces in each pairing. Including orientation reversing gluings, there are 6 such gluings. So
for a 5-tetrahedral graph, there are 610 possible gluings to consider. This number is over 60
million, and we would like not to consider all of them directly.

We consider the possibilities for each pairing and continue on to the next pairing provided
that some criteria are met. Manifolds which fail to meet the criteria either can not possibly be
hyperbolic 3-manifolds of finite volume or can be triangulated with fewer tetrahedra and have
already appeared. We use some known properties to speed up the algorithm to produce the
census. There are some arguments which enable us to ignore triangulations containing edge
classes of low size, namely those with size 1 or 2 and some with size 3. Also, we require that
the Euler characteristic of a cross section of each cusp be 0; otherwise, we don't get a torus
or Klein bottle cross section as required. This fixes the number of edge classes as equal to the

56

number of tetrahedra. At a given point partway through the gluing, we can bound the number
of edge classes from above and tell if we will have too few edge classes, and we may be able
to detect edge classes of small order. So we have some methods of telliijg partway through
the face gluings when some are not going to produce any new cusped hyperbolic 3-manifolds.
This saves time, especially when the data structures are chosen carefully. We also keep track
of the edge classes as they are built; to save time, we are careful not to reconstruct the entire
edge classes when we add one face gluing.

We compute the terse descriptions of triangulations which satisfy the Euler characteristic
and edge class criteria and eliminate redundancies.

For n = 3, 4, and 5, the census revealed 31, 224, and 1075 triangulations which may be
hyperbolic (i.e. satisfy the Euler characteristic and edge class conditions.)

Searching for Bugs in the Programs

With programs this large and full of various permutations and indices, it's natural that
bugs creep in, and we wish to catch them before they do harm. There are various consistency
checks which were useful in searching for bugs.

For instance, we could expand a terse description of a triangulation into a full description
and then run the program that produces the terse description of a triangulation. We should
get back the original terse description. Likewise, we can feed a canonical triangulation of a
manifold into "canonize." We should get back the same canonical description. We can also
put in different triangulations of the same manifold and check that we get the same canonical
triangulation. We can check by hand some of the results of the program to generate graphs.
(We did so for n = 5.) We had several versions of the program to run the census, and thus we
were able to compare results between versions. We had straightforward programs for n = 3 and
n = 4, and this provided a basis for comparison with faster, but more complicated versions.

In the census, the same triangulation (before being fed into "canonize") could not come
from different graphs. We checked to make sure this was the case.

We picked an example of two closely related manifolds obtained by the census, and we
confirmed that they were different by using methods not involving the census even though
they shared many invariants.

There are some known results which we can compare with the census. For instance, Colin
Adams and Bill Sherman showed that the smallest number of tetrahedra needed to produce
a 3-cusped manifold is 4 and that only 1 such manifold can be obtained from 4 tetrahedra.
[AS] Our results agree with that.

Computing Hyperbolic Structures on the Triangulations

The triangulations we computed may be hyperbolic, but we need to compute the hyper-
bolic structures on them. For each of the manifolds for which we compute a hyperbolic
structure we get a terse description of the canonical triangulation of the manifold, and we can
again search for duplications. The tricky part is figuring out what to do with the triangu-
lations for which the program did not find hyperbolic structures. Did the Newton's method
algorithm fail to converge when it should have? Sometimes, we may get manifolds with vol-
ume 0, and we have all fiat tetrahedra (of volume 0, but the vertices are at distinct locations
on the boundary of hyperbolic space). These we assume are non-hyperbolic. We ignore them.
Sometimes, we have degenerate tetrahedra (where at least 2 vertices are at the same place on
the boundary of hyperbolic space). These are assumed to represent an incompressible surface
which breaks the manifold into 2 distinct manifolds (in effect, we have a composite manifold);
we ignore these results. The degenerate vertices often cause infinity to be a solution of the
equations used in the Newton's method algorithm, and this wreaks havoc. We observed by
hand when this occurred to see that we appeared to get a solution of infinity, and in the end
this explained any remaining manifolds where the Newton's method algorithm failed.

57

We have a complete, non-redundant list of all cusped hyperbolic 3-manifolds obtained
from 5 or fewer ideal tetrahedra.

We got 415 manifolds for n < 5. It was already known that only 1 manifold (the Gieseking)
is obtained from the n = 1 case and that 4 manifolds are obtained from the n = 2 case. Of
the 415, 16 first appeared for n = 3, 82 first appeared for i = 4, and 312 first appeared for
n = 5. We sorted the list by hyperbolic volume. There are some volumes for which there are
multiple manifolds. Also, we did not find an orientable manifold which has volume smaller
than the volume of the complement of the figure-8 knot, whic:i is conjectured to have the
smallest volume of an orientable cusped hyperbolic 3-manifold.

Of these manifolds, 288 had 1 orientable cusp and nc non- orientable cusps, 15 had 2
orientable cusps and no non-orientable cusps, 73 had no orientable cusps and 1 non-orientable
cusp, 3 had 1 orientable cusp and 1 non-orientable cusp, 35 had no orientable cusps and 2 non-
orientable cusps, and 1 had 1 orientable cusp and 2 non-orientable cusps. Of the manifolds
with no non-orientable cusps, 2 of the manifolds with 1 cusp were non- orientable, and the
remaining manifolds were orientable.

A preliminary examination of the 415 manifolds obtained in the census suggests a high
degree of order. Specifically, it appears that most if not all of the simplest one-cusp man-
ifolds can be obtained as Dehn fillings on four multi-cusp manifolds of volume 3.66386....
Unfortunately, the evi, .ee for such relationships is at present purely circumstantial. We
hypothesize specific rela,.onships by comparing the volumes and first homology groups of the
one-cusp manifolds with the same invariants for the manifolds obtained by Dehn filling one
cusp of a multi-cusp manifold, and also by comparing horoball packings. We will eventually
write a program to produce ideal triangulations for the manifolds obtained by Dehn filling a
cusp of a multi-cusp manifold, which will allow us to use an existing program which deter-
mines whether two cusped hyperbolic 3-manifolds are homeomorphic. At that point we hope
to explain most of the manifolds in our census as Dehn fillings on a small number of multi-cusp
manifolds.

Summary

We used the computer to produce a census of cusped hyperbolic 3- manifolds obtained
from gluing faces on five or fewer ideal tetrahedra. The computer generated all possible gluings
of tetrahedra which could produce cusped hyperbolic 3-manifolds. Theoretical considerations
reduced the number of possibilities to consider and enabled the computer to find unique iden-
tifications of the hyperbolic 3-manifolds. The manifolds obtained in the census are available
for further study.

A cknowledgements

Both authors would like to acknowledge the support of the National Science Foundation's
Geometry Supercomputer Project, which is located at the University of Minnesota's Super-
computer Institute. We would also like to acknowledge conversations with Bill Thurston,
Colin Adams, and others, and we would like to acknowledge the energetic organization of Al
Maiden in running the Geometry Supercomputer Project.

References

[Bo], [Mu], and [Sp] provide general background to topology and geometry while the other
references are specialized to hyperbolic 3-manifolds.

[AHW] C. Adams, M. Hildebrand, and J. Weeks. "Hyperbolic Invariants of Knots and Links,"
to appear in Transactions of the A.M.S.

[AS] C. Adams and W. Sherman. "Minimal Ideal Triangulations of Hyperbolic 3-Manifolds,"
preprint.

58

[Bo] W. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry.
Academic Press, 1986.

[Mu] J. Munkres. Topology: A First Course. Prentice-Hall, 1975.

[Sp] M. Spivak. A Comprehensive Introduction to Differential Geometry. 5 volumes. Publish
or Perish, 1979.

[Th] W. Thurston. "The Geometry and Topology of 3-manifolds", lecture notes, Princeton
University, 1978-79.

[We] J. Weeks. "Hyperbolic Structures on 3-manifolds." Ph.D. dissertation, Princeton Uni-
versity, 1985.

59

Classicality of Trigonal Curves of Genus Five

Paulo Viana
1

M.I.T. Massachussets Institute of Technology
and

P.U.C. Pontificia Universidade Cat6lica
do Rio de Janeiro

1 Inroduction.

This paper is the description of a computer-assisted search leading to the

Theorem 1 All trigonal curves of genus five are classical.

Classical here is to be understood in the sense of F.K.Schmidt [9], that is, the van-
ishing sequence of the canonical line bundle is the classical sequence 0,1,2,3,4. Non-
classical curves are only possible if the characteristic of the field of definition does
not exceed 2g - 2 , where g is the genus of the curve, and non-classical curves up to
genus 4 were classified by Komiya [7].

For curves of genus 5 it is known that the least integer d for which the curve has
a g' can be only 2, 3 or 4. If d = 2 then the curve is hyperelliptic, and F.K.Schmidt
showed that these curves are classical (Satz 8 [9]). We deal here with the case d = 3.

The phenomenon of non-classicality is interesting for a number of reasons. There
are several instances where non-classical curves are the examples to be avoided to
be able to carry over a characteristic 0 reasoning to the prime characteristic case.
Moreover, the rare non-classical curves are usually interesting from the point of view
of other prime characteristic phenomena such as: non-reflexivity (see [4]), large au-
tomorphism groups (see [10]), supersingularity (see [11]), etc.

There are non-classical trigonal curves in other genera; besides all the examples
in low genus studied in [7] and some of the examples in [9] we mention the following
family of non-classical curves of genus 9, in characteristic 3:

Y3 + y = X10 + A7 i + A + A4 + A3 + (A4o i + 2006 2 +87 .

'Supported cy ONPq - Brazilian National Research Council, grant 200625/87.

2 Geometrical Considerations.

Let C be a (smooth, irreducible) trigonal curve of genus 5 defined over an algebraically
closed field k. It is classically known that there is a unique linear system of type g3,
and that if D is an effective divisor in this g' then 2D is special while 3D is not,
so that we can fix a canonical divisor K such that K - D is effective. We have
deg(K - D) = 5, and by the Theorem of Riemann-Roch h0 (O(K - D)) = 3, and thus
K - D is in a g2. Using the embedding given by 1K - DI we view C as a plane quintic,
the genus formula for plane curves showing that we must have an ordinary node or an
ordinary cusp P, and the g is cut out by lines passing through P. Using projective
transformations we can suppose P = (0 : 0 : 1), and thus we have described C as
F = 0, where

f(Xo, X1 ,X2) = ~ . (1)

i+j:5

and aos = eo4 = a14 = 0. We can also choose another point of C to be (1 : 0 : 0), so
as to have a00 = 0.

If L is a tangent of C at P then the intersection number I(P, C n L) of C and L
at P is at least 3. We distinguish two cases:

1. There is a tangent L such that I(P, CfL) < 5. In this case C meets L in another
point Q, and using projective transformations we can assume Q = (0 : 1 : 0),
and so L is the line Xo = 0. These conditions imply that a23 = aSO = 0.

2. For every tangent L we have I(P, C n L) = 5. We can still choose X0 = 0 as
a tangent, so as to have a23 = 0, and the condition for the intersection number
implies a32 = a41 = 0.

A system of adjoint curves is given by conics passing through P, and so there is a
canonical morphism of the form (Xo : XoXi : X2: XoX 2 : X1 X 2) , or, if x := X1/Xo
and y := X 2/Xo, (1 : X : X2 : y : xy). Clearly the function field k(C) is given by
k(x, y).

3 Arithmetical Considerations.
The ramification index eQ of a point Q over k(x) can be 1, 2 or 3, and if the charac-
teristic p of k is not 3 then we have, by the Riemann-Hurwitz formula,

eQ - 1 = deg Vk(c)lk(.) = 14, (2)
Q

where Dk(c)Jk(z) denotes the different of k(C) over k(x). The point Q is unramified
(resp. of ordinary ramification, resp. of total ramification) if eQ = 1 (resp. eq = 2,
resp. eQ = 3). The possible order sequences at a ramification point over k(x) were

61

determined by Coppens [1, 2] and Kato [5] for the case of characteristic 0, but it

is easily checked that their proofs remain valid in prime characteristics to yield the
following: the order sequence at a total ramification point can be only 0,1,3,4,6,
in which case the point is said to be of type I, or 0,1,3,4,7, and then the point is
said to be of type If. The order sequence at an ordinary ramification point can be
only the classical sequence 0,1,2,3,4, in which case the point is said to be of type
I, or 0,1,2,3,5, and then the point is said to be of type II. We conclude that the
existence of an ordinary ramification point of type I implies the classicality of the
curve; moreover, we use the Corollary 1.7 in [12] to conclude that the existence of a
total ramification point of type I implies the classicality of the curve in characteristics
other than 3 and 5, that the existence of a total ramification point of type II implies
the classicality of the curve in characteristics other than 2, 3 and 7, and that the
existence of an ordinary ramification point of type II implies the classicality of the
curve in characteristics other than 5.

On the other hand, if p # 3 then we can use Corollary 6.2 in [6], checking that its
proof remains valid in characteristics other than 3, to conclude that if the extension
field k(C)lk(x) is non-cyclic then there is an ordinary ramification point of type I,
and therefore the curve is classic. So we can have nonclassicality only if k(C)Ik(x) is
cyclic, and in this case all the ramification points are total; by the Riemann-Hurwitz
formula we have 7 ramification points altogether. We can now use Theorem 2.1 and
Proposition 3.3 in [1], again checking that the arguments there are characteristic free,
to conclude that we have exactly 5 total ramification points of type I and 2 of type
II. In the presence of these points the only characteristic left for nonclassicality is 3.

4 Computational Considerations.

As the field extension k(C)lk(x) must be separable we may take x as a separating
variable, and the curve C will be classical if and only if the Wronskian determinant
with respect to the classical order sequence (see [12]) is not identically zero, ie, if and
only if

W := det(D(')(fj))j=o,... 4 # 0, (3)

where fj are the functions 1, x, x2, y,xy given by the embedding and DY) (fj) denotes
the i th Hasse-Schmidt derivative of fj (see [3]). These derivatives are used to avoid
the vanishing of higher order terms in prime characteristics; they are defined in k[x]
by

l(-=I

and extend uniquely to k(x) and to k(x, y). They satisfy the pioduct rule

D(9(gh) _D(j)(g)D(-

j=O

62

and the iteration rule ('i)Dx (g) = - (DOg)

and these rules can be used to compute the derivatives implicitly from equation (1).
This process, however, is slow.

As an alternative way to compute DW9(y), for which we are indebted to Karl-Otto
St6hr, we use the the generalized Taylor expansions (see [81) of x and y:

Tx = x+t

Ty = ED)(y)t'. (4)
1=0

Taking these expansions in equation (1) we have F(1,Tx,Ty) = 0, and the condition
for the vanishing of the coefficient of ti gives DV)(y) as a rational function in x, y and
D(m)(y) for m < 1, and so we can obtain these derivatives recursively. This process
is made easier by the following general lemma:

Lemma 1 Let K be an algebraic function field in one variable, and suppose that
K = k(x, y), where x and y satisfy a polynomial relation

f(x, Y) = E aix'y', (1)

and that Klk(x) is a separable field extension. The Hasse-Schmidt derivatives can be
recursively expressed as rational functions

D.M(y) = ndd,

where ni E k[x,D(-,)(y),m < 1] and di = d E k[x,y]* for all I (that is, di is in fact
independent of 1).

Proof We take the expansions (4) in the equation (1) to get
infi\a, Q X ti- L 11 Dk)(ylt' -- 0.

id n=O n] I il+...+i=j= r=1

We view the left-hand side of this equation in k[x, D(m)(y)][[t]], and observe that the
first occurrence of the derivative DW)(y) is in the coefficient of ti , corresponding to
the term with n = i, i, = l for some r =1,...,j,and i= 0 for s r. Thus the
vanishing of the coefficient of ti can be expressed as

D(0(y) ja~ix'yi - ' - nt = 0,

where nt E k[x, D(-,)(y), m < 1]; set

d := ,jajxy -

63

If d vanishes then we have aj 0 0 only if phj, which contradicts the separability
condition, and so we have proved the lemma.

Using the lemma we compute the Hasse-Schmidt derivatives DY) (y) and substitute
them into (3). Observe that using properties of determinants we have

W = [D(3)(y)1 2 - D(2)(y).D(4)(y).

Because of the lemma we know that d 6 0, and that for some integer n we have that
dnW is a polynomial in x and y; by inspection we see that in our case n = 8, and
so we are reduced to check the vanishing of dsW E k[x,y], and for that we use all
the simplifications in section 1. From what we have seen in section 2 we can suppose
that p = 3.

As the polynonial expression d8W is too large to be conveniently dealt with, we
have done separately the computation of several of its subexpressions, eg, terms in
d8W of the form xn, etc. Theorem 1 is obtained by checking that in all cases the
condition of vanishing of these subexpressions implies some decreasing of the genus.
To illustrate this procedure we describe it in detail for the second case in section 1,
that is, when for any tangent L at P the intersection number of C and L at P is 5,
the treatment of the other case being similar.

We start by observing that in this case P can not be a cusp, because if it were then
the condition on the intersection number would imply that P is in fact a higher-order
cusp, and the genus would drop. We then have an ordinary node, and as we can
suppose that Xo = 0 is a tangent at P we must necessarily have a13 0 0. Notice that
as deg(f) = 5 we must have aso 6 0. We then have

d8W= a2 a2 a6 Y20 - -- +(
a2aoaly + ... + (0o 03a 13 + ao2a13 + ao2 ao3 (.. .))ylS +.

If d8W is to vanish identically we must have a02a03 = 0, but if a02 3 0 then a03 = 0
and dW = a402a 3y 8 +..., and the curve would be classical, so we have a02 = 0, and

dW=a2 2 6 18+...dW = aoa1aal 3y +..,

and so aoaw = 0. We cannot have ao1 = a03 = 0 for otherwise xlf(x, y) and the
curve would be reducible. If a03 = 0 then ao0 6 0 and

SdW-a
4
a 5 13 _4 5 a

4
a
2 4

\ 12 -5 4 .11

dW = aa 2a 13y - (aolaal3 + a01012 3)Y + aola13a22y .. ",

and so a 12 = all = a22 = 0, and proceeding in this way we see that the vanishing of
d8 W implies the vanishing of a 2l, a20, a31 and a 30 . We are left with

dW = aa 2
6 26+

and the curve is classical. The other case, when ao3 6 0 = a01 , is treated similarly.
The strategy actually used for dealing with dSW follows very close the above

description: critical terms were selected in the expression of d8W and these terms

64

were computed one at a time, using at each point the simplifications obtained by
the conditions of vanishing of previously computed terms. The computation of these
terms, some of which were quite long, were done using the MACSYMA program at
the Sun Workstations of the Departament of Mathematics of M.I.T.

The author did this work while enjoying a period as a visitor at M.I.T., and he is happy to have
this opportunity to thank professor Steven Kleiman for the invitation.

References

[1] M.Coppens The Weierstrass gap sequences of the total ramification points of
triqonal coverings of P1 , Indag. Mat. 47 (1985) 245-270.

[2] M.Coppens The Weierstrass gap sequences of the ordinary ramification points of
trigonal coverings of P'. The existence of a kind of Weierstrass gap sequence,
J.Pure Appl. Algebra, 43 (1986) 11-25.

[3] H.Hasse-F.K.Schmidt Noch eine Begriindung der h'heren Differentialquotienten
in einen algebraischen Funktionenkdrper einer Unbestimmten, J.Reine Angew.
Math., 177(1937) 215-237.

[4] M.Homma Reflexivity of tangent varieties associated with a curve, preprint.

[5] T.Kato On Weiertrass points whose first non-gaps are three, J.Reine Angew.
Math., 316 (1980) 99-109.

[6] T.Kato-Horiuchi Weierstrass gap sequences at the ramification points of trigonal
Riemann surfaces, J.Pure Appl. Algebra, 50 (1988) 271-285.

[7] K.Komiya Algebraic curves with non-classical types of gap sequences for genus
three and four, Hiroshima Math. J., 8 (1978) 371-400.

[8] F.K.Schmidt Die Wronskische Determinante in beliebigen differenzierbaren
Funktionen K6rpen, Math. Z., 45(1939) 62-74.

[9] F.K.Schmidt Zur arithmetischen Theorie der algebraischen Funktionen IL All.
gemeine Theorie der Weierstrasspunkte, Math. Z., 45 (1939) 75-96.

[10] H.Stichtenoth Uber die Automorphismengruppe eines algebraischen Funktio-
nenklhrpers von Primzahlcharakteristik. Teil II Ein spezieller Typ von Anktio-
nenk'rpern, Arch. Math., 24 (1973) 615-631.

[11] K.O.St~hr-P.Viana A Study of Hasse-Witt matrices by local methods, to appear
in MF.th.Z.

[12] K.O.St~hr-J.F.Voloch Weierstrass points and curves over finite fields, Proc. Lon-
don Math. Soc., 52 (1986) 1-19.

65

Symmetric Matrices with Alternating Blocks

ABRAMO HEFEZ and ANDERS THORUP
Univ. Fed. do Esp. Santo, Matematisk Institut,
Depart. de Matematica, Kobenhavns Universitet,
Vitoria - ES, Brazil. Copenhagen, Denmark.

A statement in algebraic geometry over fields of arbitrary characteristic follows from the
existence of matrices with integer entries of the type mentioned in the title. It is shown how
these matrices can be built from a finite number of small matrices. It is reported how these
small matrices, of which the largest is a 25 by 25 matrix, were found using computer algebra
systems.
s m

INTRODUCTION

The matrices of the title are block matrices of the following form:

0 M12 ... M11.
-M2 0 ... M2r

\-Mlr -M2r 0.

where each block Mij is an alternating s x s matrix. Matrices of the above form
are symmetric matrices of size equal to rs. They occur naturally as local Hessians
of the Plficker embedding of the Grassmannian into projective space.

The Grassmannian and its dual variety were studied by Hefez and Thorup in
[H-T-87]. For their duality result they needed the rank of the general matrix of
the above form with values in an arbitrary field. To find the general rank, they
construct certain matrices with integer entries. More precisely, when both r and s
are greater than 2, they construct a matrix of the above form whose determinant
is equal to ±-1 if rs is even and equal to :-2 if rs is odd.

The object of the present note is to report on their construction with the empha-
sis on its computational aspects. Section 1 describes the geometric background
of the problem. Section 2 treats matrices of the above form with entries in an
arbitrary field and constructs matrices with integer entries out of simpler matrices
of small sizes. The necessary small matrices, of which the largest is a 25 x 25
matrix with r = s = 5, are listed in Section 3. These matrices were found on a
computer.

1. GEOMETRIC BACKGROUND

Let X be a subvariety of projective N-space 1p
N . The dual variety X' is the

set of tangent hyperplanes to X, considered as a subvariety of the dual projective
space pN. The concept of duality is treated in the extensive survey of Kleiman
[K-86]. The variety is called reflexive when (omitting the details) the double
dual, X", equals X. It is called ordinary if, moreover, the dual variety, X', is a
hypersurface in 1pN. In characteristic zero every variety is reflexive.

The above notions were studied by Hefez and Kleiman [H-K-85] using local
Hessians. With every point x of X there is associated a local Hessian which is a
certain symmetric matrix of size equal to the dimension of X. They show that X
is ordinary iff the local Hessian generically is of corank equal to 0, i.e., is regular.
Following their terminology, the variety X is called semi-ordinary if the local
'Hessian generically is of corank equal to 1.

The case where X is the Grassmannian of r-dimensional subspaces (r > 2)
in a vectorspace of dimension r + s (s > 2), embedded as usual in jpN with
N = (+)-1, is studied by Hefez and Thorup [H-T-87]. They prove the following
result:
(a) The dual of the Grassmannian is a hypersurface in pN except in the following
cases. One of r, s is equal to 2 and the other is odd. In the exceptional cases, the
dual has codimension 3 in jP .

(b) The Grassmannian is reflexive except in the following cases: The charactei-
istic of the field is 2, and both r and s are odd. In the exceptional cases, the
Grassmannian is semi-ordinary.
(c) The Grassmannian is ordinary iff none of the exceptional cases in (a) or (b)
occur.
Part (a) of the result for n = I and in characteristic zero is partly contained in
Griffiths and Harris [G-H-79, (3.10) p.396] and partly in Mumford [M-78). The
full result in characteristic zero is proved independently by Knop and Menzel in
(K-M-87].

The proof of *the result involves an analysis of how the dimension of the dual
variety varies with the characteristic of the groundfield, and a consideration of the
local Hessians of the Grassmannian. The latter Hessians are block matrices of the
form mentioned in the introduction. The consideration of the Hessians is based on
the following fact: The general matrix of the form mentioned in the introduction
with entries in a given field has corank equal to 0 except for the exceptional cases
listed in the result above. In the exceptional cases of (a), the general matrix is of
corank equal to 2; in the exceptional cases of (b), it is of corank equal to 1.

2. MATRICES OF TYPE (r, s)

A matrix M with entries in a given field will be called a matrix of type (r, s) if it
is of the following form:

0 M12 ... M1,.
-M 1 2 0 ... M2 r

(M& r -M2r ... 0

where each block Mij is an alternating s x s matrix.
The following is a series of elementary observations about matrices of type (r, s).

(2.1). A matrix of type (r, s) is a symmetric matrix of dimension rs with zeroes
in the diagonal.
(2.2). There is an obvious permutation of the entries of a matrix M of type (r, s)
which transforms it into a matrix of type (s, r) without changing its determinant.

67

(2.3). The only matrix of type (r, s) with r or s equal to 1 is the zero matrix.
(2.4). A matrix M of type (2, s) has the form,

M= (A 0
where A is an alternating s x s matrix. Hence detM = (detA)2. If s is even,
then an obvious choice of A gives a matrix M with det M = 1 and, therefore, the
generic corank is equal to 0. Assume that s is odd. Then, as is wellknown, an
alternating s x s matrix is singular. Therefore, the corank of M is at least equal
to 2. Again, an obvious choice of A gives a matrix M of corank 2. Hence, the
generic corank of M is equal to 2 if s is odd.
(2.5). Assume that the characteristic of the field is 2. Then a matrix M of type
(r, s) is alternating. In particular, det M = 0 if rs is odd.

LEMMA (2.6). Let r and s be integers greater than 2. Then there exists a matrix
N with integer entries and of type (r, s) such that

detN = { 1 if rs is ever.,

-2 if rs is odd.

PROOF: For positive integers r and s, denote by v(r, s) the minimum value of
exponents v such that for some matrix M with integer entries and of type (r, s),
the determinant of M is equal to ±2v. (Set v(r, s) := oo if no such exponent exists.)
Clearly, the Lemma asserts that if r and s are greater than 2, then v(r, s) = 0 if
rs is even and v(r, s) = 1 if rs is odd.

First observe that the following relations hold:

(1) v(r,s) = v (s,r).
(2) v(ri + r 2 , s) :_ v(ri, s) +v (r 2 , S).

(3) v(r,s) = 0, if r and s are even.
(4) v(r, s) > 0, if r and s are odd.

Indeed, (1) follows from (2.2), (2) follows by observing that a direct sum of
matrices of types (ri, s) and (r2 , s) is a matrix of type (rl + r2, s), (3) follows from
(1) and (2) using the obvious value v(2, 2) = 0, and (4) follows from (2.5) reducing
the matrix modulo 2.

Next, the matrices listed in Section 3 give the values

v(3,4) = v(6,3) = 0,
and, using (4),

v(3,3) = v(5,3) = v(5,5) = 1.
Moreover, using the above values and (2) and (3), it follows that

v(5, 4) < v(2, 4) + v(3, 4) = 0

and
v(5,6) _ v(2,6) + v(3,6) = 0.

In particular, from (1), (2), (3) and the above values it follows that v(r, 4n) = 0 if
r is even or equal to 3 or 5.

Finally, write each of r and s in the form t + 4n, where t is equal to 3, 4, 5 or 6
and n is non-negative. The conclusion follows immediately from the above results.

68

PROPOSITION (2.7). Let r and s be integers greater than 1. Then the general
matrix M of type (r, s) with entries in a field is of corank equal to 0 except in the
following cases:
(a) One of r, s is equal to 2 and the other is odd. In this case M is of corank equal
to 2.
(b) The characteristic of the field is 2, and both r and s are odd. In this case M
is of corank equal to 1.

PROOF: The assertion holds if r or s is equal to 2 by (2.2) and (2.4). Hence for
the rest of the proof we may assume that r and s are greater than 2.

Let N be a matrix of type (rs) with the property asserted in Lemma (2.6),
and consider its reduction, N, modulo the characteristic of the field. Then N is
regular, that is, of corank equal to 0, except when the characteristic is 2 and rs is
odd. Therefore, M is of corank equal to 0 except in case (b).

Thus it remains to prove in case (b) that the general matrix M of type (r, s)
is of corank equal to 1. By (2.5), the corank is at least equal to 1. Therefore, it
suffices to prove that the matrix R is of corank equal to 1. Let d := rs be the
dimension of the matrix N, and consider the matrix adjugate to N. It is a d x d
matrix whose entries up to sign are the (d - 1) x (d - 1) minors of N. Since N has
determinant equal to ±2, the adjugate has determinant equal to ± 2 d- 1. It follows
that at least one entry in the adjugate has to be odd. Thus some (d - 1) x (d - 1)
minor of N is odd, and therefore, the reduction R has rank d - 1, that is, N is of
corank equal to 1. Hence the Proposition is proved.

3. SMALL MATRICES OF TYPE (r, s)

This section lists matrices of types (2,2), (3,3), (3,4), (5,3), (6,3) and (5,5)
with determinants as required in the proof of Lemma (2.6). Except for the first
(trivial) matrix in the list, they were computed on the IBM 4341 at the University
of Copenhagen as follows:

A matrix M of type (3,3) is given by 3 blocks A, B, C. As each block is an
alternating 3 x 3 matrix, it may be identified with a triple of coordinates. There-
fore, the determinant det M is a polynomial in 9 variables. It is homogeneous of
degree 9. This polynomial was computed and factored by REDUCE (Version 3.0).
REDUCE found the following identity:

det -A 0 C = -2 det(A, B, C)3.
B -C 0

In the latter identity A, B, C are alternating 3 x 3 matrices. On the left hand
side they are blocks in a 9 x 9 matrix. On the right hand side each of A, B and
C is considered as a column (in a 3 x 3 matrix) by taking its 3 entries above the
diagonal.

An obvious choice of the 3 x 3 matrix on the right hand side of the above identity
produced the matrix of type (3,3) in the list below.

The higher values of r, s were handled differently. A small interactive program
was written using MATLAB to compute determinants. The entries of the matrices

69

were varied in small loops until the desired determinant was obtained. In the case
of matrices of type (5,5) the number of variable entries is equal to 100.

The list of matrices found is the following:
Type of matrix H is (r,s)=(2,2). Type of matrix M is (r,e)-(3,3).
Size is 4x4. det(H)-1. Size is 9x9. det(H)n2.

000 000 001
0 0 0 1 0 0 0 0 0 1 0 0 0
0o 0 -1 0 0 0 0 0-1 0 -1 0 0

0-1 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0-1 0 0 0 -1 0 0

010 000 000

0 0-1 0-1 0 0 0 0

000 100 000
100 000 000

Type of matrix H is (r,s)=(3,4). Size is 12x12. det(H)-1.

0 0 0 0 0 10 0 0 0 0 1
0 0 0 0 -1 0 0 0 0 0-1 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 -1 0 0 0

0-1 0 0 0 0 0 0 0 0 0 0

1000 0000 0000
0 00 0 0 00 0 000 1
0 0 0 0 0 0 0 0 0 0-1 0

0 0 0-1 0 0 0 0 0 0 0 0
0010 0000 0000
0-1 0 0 0 0 0-1 0 0 0 0
1000 0010 0000

Type of matrix M is (r,s)-(5,3). Size is 15x15. det(M)- 2.
000 000 000 001 010
0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0
0 0 0 0-1 0 00 0 -10 0 0 00
000000010000001

0 0-1 0 0 0 -100 0 0 0 000
0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0

000 0-10 000 000 000
000 100 000 001 000
000 000 000 0-10 000

0 0-1 00 0 000 0 0 0 000
0 0 0 0 0 0 0 0-1 0 0 0 0 00
100000 010 000 000

0-10 0 0-1 0 0 0 0 0 0 0 00
10 0 0 0 0 0 0 0 0 0 0 0 00
000 100 000 000 000

70

Type of matrix H is (r,s)=(6,3). Size is 18x18. det(M)= -1.

000 000 000 001 010 000

0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0-1

0 0 0 0-1 0 0 0 0 -1 0 0 0 0 0 0 1 0

000 000 010 000 001 000

0 0-1 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0-1 0 -1 0 0 0 0 0

0 0 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 10 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0-1 0 0 0 0 -10 0

0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0-1 0 0-1 0 0 0 0 0 0 -1 0 0

100 0 10 0 10 00 0 000 00 0

0-10 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0

100 000 000 000 000 000
000 100 000 000 000 000

0 0 0 0 0 0 0 0-1 0-1 0 0 0 0 0 0 0

001 000 000 100 000 000

0-10 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Type of matrix M is (r,s)=(5,S). Size is 25x25. det(H)x 2.

000 0 0 0 1000 0 0 100 0 00 10 0 00 0 1

0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 -1 0 0 0 0

0-10 0 0 00 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10000 00000 00100 00010 00001

00 0 0 0 00 000 0-1000 00 00 0 0 0 0 00

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0-10 0 0 0 0 0 0 0

000000000000000000000-1000

0 0-10 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00000 00-1 00 00000 00000 00000

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 0 0 0 1 0 0

000-10 00 000 0 00 00 0 0 000 00 0 00

0 0 0 0 0 0 0 0-10 0 0 0 00 0 0 0 0 0 0 0 0 0 0

00000000000000000000000-10

1 0 0 0 0 0 1 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 00 0 0 0 0 10 0 0 0 0 0 0 0 0-1 0

000 0-1 00 000 0 0000 00 00 0 0 0 0 00

0 0 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 00 0 0 00 0 1 0 0 0 10 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 0-1 0 0 0 0 0
10 0 0 0 0 1 0 0 0 0 0-1 0 0 0 0 0 10 0 0 0 0 0

71

REFERENCES

[G-H-79] Ph. Griffiths and J. Harris, Algebraic geometry and local differential geometry, Ann.
Sci. Ecole Norm. Sup. 12 (1979), 355-432.

[H-K-85] A. Hefez; and S. Kleiman, Notes on the duality of projective varieties, in "Geometry
Today (Giornate di Geometria, Rome 1984)," (eds.) E. Arbarello, 0. Procesi, E. Strickland,
Birkhiuser, Boston, 1985, pp. 143-183.

[H-T-87] A. I-efez and A. Thorup, Reflexivity of Grassmannians and Segre varieties, Commu-
nications in Algebra 15,6 (1987), 1095-1108.

[K-86] S. Kleiman, Tangency and Duality, in "Proc. 1984 Vancouver Conf. in Algebraic Geom-
etry," (eds.) J. Carrell, A. V. Geramita, P. Russell, CMS Conf. Proc. 6, Amer. Math. Soc.,
1986, pp. 163-226.

[K-M-87] F. Knop and G. Menzel, Duale Varietiten von Fahnenvariidten, Comment. Math.
Helv. 62,1 (1987), 38-61.

[M-78] D.Mumford, Some Footnotes to the Work of C.P.Ramanujan, in "C. P. Rainanujan - A
Tribute," Tata Studies in Math., Springer, 1978, pp. 247-262.

72

COHOMOLOGY TO COMPUTE

D. Leites (Stockholm University, Department of Mathematics,

Box 6701, 11385 Stockholm, Sweden)

G. Post (University of Twente, Department of Applied Mathematics,

Box 217, 7553 EA Enschede, The Netherlands)

Introduction

Our purpose is to interest people to calculate (co)homology with help

of a computer, in particular, (co)homology of Lie algebras and Lie

superalgebras.

Homology is easy to explain. Given a linear space V and d e End(V)

such that d2 - 0, we call H(d) - ker(d)/im(d) the homology of d. Here

ker(d) - (v G Vjd(v) - 0) and im(d) - (v e Vjv - d(w) for some w r V).

Cohomology is a special case of homology.

Here, we give an introduction in Lie algebras and the basics of

cohomology of T.ie algebras. A method to implement d is described.

Finally we give a list of open problems. Probably not all of them are

suitable to tackle by computer. However, having computed partial

results, this might give ground for a reasonable hypothesis.

Throughout we refer to Fuks [1986].

D.L. acknowledges the financial support of a Bendixson grant, Swedish

N.R.F. and, partially, M.P.I. Bonn.

1. Lie algebras

For sake of completeness, we start with a definition of a Lie algebra.

A Lie algebra 9 over a field k is a vector space over k, equipped with

a bilinear map [.,.]: 9 4 9 (called Lie product or bracket) such that

1) [xx] - 0 (V x G 9)

2) [x,[y,z]J + [y,[z,xjl + (z,[x,y]] - 0.
(V x,y,z e 9).

From property 1) one easily derives (x,y] - - [y,x], by considering

[x+y,x+yl - 0.

If 9 and A are Lie algebras over k, and p: 9 A is a linear map, then

p is called a morphism of Lie algebras if for all x,y e 9:

p([x,yD) - [p(x),p(y)l

The standard example of a Lie algebra is the following.

Let End(V) be the space of linear maps from V to V, where V is a

vector space over k. End(V) has a natural product, i.e. composition of

two endo- morphisns. For [.,.] we take the commutator, so

[x,y] - xoy - yox

End(V) with this bracket becomes a Lie algebra, denoted by 92(V).

A morphism P: 9 4 9(v) (for some V) is called a

representation of 9.

It gives a realization of 9 by linear operators on V, or even as

matrices if dim(V) < -.

A different terminology is simultaneously in use.

If p: 9 4 92(V) is a representation, then V is called a 9-module. The

action x-v (xe., veV) is defined by:

x-v - p(x)v,

74

and is linear in x and v. Moreover it satisfies

fx,y].v - (xoy)(v) - (yoxX)(v

The Lie algebras and its modules that we encounter are often graded.

Suppose A is an additive subgroup of k. Then a (or V)is A-graded means

that we have direct sum decompositions in linear subspaces

a -D (k) ;V - 0 D k
kEA keA

such that I k'i za(~
g k199r

2

and

gI 6V (+ (gk 6 ak' IVI 6 ()

Gradings play an important role in (co)homology.

2. Definition of cohomology of Lie algebras

Let a be a Lie algebra over the field kc, and A a a-module. We denote

the linear space of q-linear, skew-symmetric maps c: 9 X ... x a -) A

by C"(9q;A), and put C'(a;A) - 0 Cq(9q;A); Cq(a;A): - 0 for q < 0.
qeZ

Define dq: Cq(9 ;A) -) C q+1(a;A) by

(q2:0) dqc (gj,...,Ng+j) - X (-l) 3+-c((g t],1 .. 9.gt...,gq+1)

1:5s< t:5q+ 1

(q < 0) dq - 0

Here means, that the element under it is deleted.

From these d,, one builds d: C*(.;A) -> C*(a;A) by setting d(c)-dq(c),

if c 6= C and extending it by linearity.

75

One can check that dod - d- 0. Hence im(d) C ker(d). This leads

to the following definition:

Definition H (9;A): - ker(d)/im(d);

0(9;A): - ker(dq)/im(dq_l).

One easily checks that H*(9;A) - 0 10(g;A).
qto

If V e C (S;A) n ker(d), then its cohomology class is denoted by [f].

A special, important case is A - k, and g.k - 0 (Vg e 9, k e k), ie.

the trivial representation. In this case, the last term in the

definition of dq disappears. We write Hq(9) instead of Hq(g;k).

Now suppose that a and A are graded. We denote by CqA)(a;A) those

elements of C"(a;A) that satisfy

c(gj,...,gq) G A if gi G

One can easily check that CO(A;A) - H Cq (9;A) and, putting

- 0 C (g;A), that d CC C* (g;A). Thus
X) qG ()X ()X

constitutes a subcomplex, and we can define H A)(S;A) in the obvious

way.

This describes the cohomology H (S;A) completely, since we clearly have

H'(a;A) - a HA(9;A).

mA)

In case of the trivial module A - k, we set A - AM).

If 9 and A are finite-dimensional, we find H - 0 H

In case 9 and A are infinite-dimensional, there is often some topo-

logy given, and Cq(gA) is required to consist of continuous mappings.

In this case we find H C R H

Theorem (Fuks 1986], Th. 1.5.2b) Suppose there exists a go C 9

such that [go ,g] - A gA ane g0 .aA - 1.a

agAG9(r) a A(/4).

ThenH - 0 for A 0.

76

This, of course, reduces the work to be done greatly.

3. Applications of cohomolosy

We list some applications of cohomology.

Example 3.1 H2() describes the non-trivial central extensions of a.

Namely, for [] e H2(a), define on a 0 k the bracket by:

((g 1 ,c 1),(g 2 ,c 2)) - ([g1 ,g2 1, 0(g1,g2))

Example 3.2 (Fuks [1986], §1.4) Consider the vector space a as a

9-module with gx - [g,x] (g,x ra), and let H'(9,S)

denote the corresponding cohomology.

Then: (a) H°(9;9) is the center of q, i.e. all x e 9,

such that [g,x] - 0 Vg 6 9

(b) H (a;a) is the space of exterior derivations.

(c) H 2(a;) is the space ofinfinitesimal deforma-

tions of a, i.e. the tangent space to the

variety of deformations.

Furthermore we mention that cohomology is useful in

- deriving combinatorial identities, e.g.

2 tn2n/2I, (1 -_0) -- 1 + E (--1)n (tO 3") 2 + (3 -n 2

- listing invariant differential operators in spaces of tensor

fields.

For details we refer to Fuks [1986], Ch. 2.

4. Implementation of d.

We saw one important application of gradings to cohomology (Theorem

2.3). However, not always there exists an element go. Nevertheless,

for computations the grading can be very important. Namely it can

happen that a is infinite-dimensional, but C) (9;A) is finite-dimen-

sional (for all q and A). This makes computation possible.

77

For explicit implementing the d-operator, it is even necessary in our

approach.

For convenience we assume that dim(a) < - and dim(A) < -. All results

below are easily extended to the infinite-dimensional case with

dim (C" (a;A)) < -. First we consider A - k and C"(.).

Let dim(9) - n and (xl,...,xn) its basis. We order these elements with

their indices, i.e. xj < x3 if i < J.

Let I - (il....iq) be a multi-index, 1 : i, < ... < iq : n. Then

el e Cq(q) is defined by

~~el(x l,..... x q) - 6, J - (J 1 Jq), J I < ... < Jq.

One can check that (ex) is a basis for Cq(a). We also write

e1 - ei, A el 2 A .. Aelq

and treat e1j A.. .A ej q as exterior product, i

e (i) A ea(2) A e a(Iq - sgn(a).ejl A A eq

where a is a permutation of (i1 ,i 2,... ,iq).

n

Proposition Set (x±,xj - E cjj xk,
k-i

k
Then d(ek) - Z cij el A ej, and

i<j
q

d(e IA.. .A ejq) - (-l) 'd(e,)A e 1 A.. .A ei.A... A eiq.

This proposition yields an effective procedure for calculating d(e1).

The last author programmed it in REDUCE 3.

For er, we take el - EXT(ii 2, q), an operator.k
Moreover we need the structure constants cjJ. Hence we defined

LIELIST() - ((ckv ii ji) ... (cia. i. j..)).
k

Since tirms with cij - 0 give no contribution, we omit these in

LIELIST(K). Moreover we have a procedure MULFORM(I,J), which yields as

result EXT(IuJ) with 1uJ arranged increasingly, with the proper sign.

78

I

In essence d(EXT(ij,... ,iq)) is now given by:

d(EXT(i1 ,iq)): - SUM OF: FOR EACH i. IN (ij ... iq)

AND FOR EACH element IN LIELIST(i,)

(-l)'*CAR(element)*MULFORM(CDR(element),
A

(i i))

Now we consider Cq(a;A), with a non-trivial module A.

Suppose v, ... ,v" is a basis of A. We write e1 * vk for the

element of Cq(q;A) that satisfies

e I * vk(x 3 I.... 1xjq) - 61,j.vk.

Now looking at the definition of d, we see that d consists of two

parts, of which the first part is similar to the d-operator in the

case of the trivial module, i.e. as described above. If we denote this

part by d., and the other part by d., we find

d(EXT(ix,...,iq)*vk) - dt(EXT(ij iq))*Vk + d,(EXT(ij,...,iq)*vk).

Let us describe the second part. It is an element of C q+1(;A), i.e.
of the form Z EXT(jl,...,Jq+)*Vj .

From the definition one sees that this sum need only to range over

elements (Jl...Jq+i) such that (i 1 iq) is contained in it, i.e.

01l Jq+l) - i .. SI i, i s yq .

Let us denote x*v j - ACT(ij). Then for d5 (e1 *v) we find the

following

dm(EXT(ii,...,iq)*v) - SUM OF:i - 0 : n

(-I)* * ACT(i,k) * EXT (i i

where s is such that i.-1 < i < is.

These two procedures describe the d-operator. Using them one

calculates Hq(9 ;A).

We mention one test for correctness. Because of d2 - 0, one can apply

d to A, with A - dc. The result must be 0.

79

5. Some open problems

We mention the problems without further explanation.

Problem 1 Defining relations for maximal nilpotent subalgebras N+

of vectory (or Cartan-type) Lie algebras. This means

calculation of the homology H2 (N+).

Problem 2 Cohomology of Hn with trivial module.

It is known that H (Hn) is finite-dimensional

(see Fuks [1986], p. 114).

Problem 3 Cohomology of Wn with coefficients.h r -
I(X1)e. .. .O'(x,), where I(X) - C7X xV Xis the 9(e)-module wih highest weight X.

If PX is the representation corresponding to V , the

W.-action in I(X) Is given by setting for v E VX , V E Wn:

fV 0v if deg V - -1

V(v) - PX(V)(v) if deg D - 0

0 if deg 1 > 0

and further recursively

V(al,...8 v) - B,... a'k]S 1 ikaa , ... a1 v
k + ail,... a1 (v)

The 0-th cohomology corresponds to invariant

differential operators (like the exterior, say). Some

answers are given in Fuks [1986], Leites [1985], in

particular in this way P. Grozman discovered a new

operator

f(X){L) ,g(X)() 3 [, f,9 1g

invariant with respect to the group of diffeomorphisms

of the 1-dimensional manifold with local coordinate x.

80

ProbleM_.4 Cohomology of finite-dimensional Lie algebras in prime

characteristic p, in particular for p - 2, with

trivial, adjoint, etc. coefficients. No answers are

known for p - 2.

Finally, we remark that the notion of (co)homology extends to Lie

superalgebras. No (co)homology of infinite-dimensional Lie super-

algebras is calculated yet. A list of examples of Lie superalgebras

and their modules can be found in Fuks [1986] and Leites [1985]. The

most interesting and, fortunately, the easiest problems are the cases

of trivial and adjoint representation. All the above problems 1-4

apply to Lie superalgebras as well.

References

Fuks (1986]: Cohomology of infinite-dimensional Lie algebras,

Consultants bureau, New York (1986).

Leites [19851 Lie superalgebras, JOSMAR, vol. 30 (1985).

Also helpful might be:

D. Leites (ed): Seminar on Supermanifolds (numbers 1-32), Reports

Department of Mathematics, Stockholm University.

81

Use of symbolic methods in analyzing an integral operator

H. F. Trotter, Department of Mathematics

Princeton University, Princeton NJ 08540

Introduction

The "stability of matter" problem in theoretical quantum mechanics is to derive from basic
theory a mathematically rigorous lower bound on the energy per nucleus of an arbitrary configuration
of nuclei and electrons. Such a lower bound provides a theoretical explanation of why the electrons
do not simply collapse into the nuclei. The existence of a lower bound for the energy was originally
proved by Dyson and Lenard in [1]. Lieb and Thirring [4,3] later established a much better bound,
coming within a factor of about 5.4 of the value suggested by experimental data. Recently,
C. Fefferman [2] has presented a method that promises to yield a further improvement. Roughly,
the idea is to express the total energy as an integral over all balls (of all sizes) in R3 , and then for
each ball that contains nuclei to assign its energy in equal shares to all nuclei in it, and for each ball
that contains no nuclei to assign its energy to the nearest nucleus. The lowest energy assigned to any
nucleus is obviously a lower bound for the average energy per nucleus. Arguments given in [2]
provide bounds for the energy contributed to a nucleus by all balls except those that are contained
within a sphere of radius 25 about the nucleus and have their center within a distance 8 of the
nucleus, where 25 is the distance to the nearest other nucleus. It is also shown in [21 that a lower
bound for the energy contributed by the remaining balls can be obtained in terms of the sum of the
negative eigenvalues of the quadratic form Q = K - V described below, which is essentially the
part contributed by the same family of balls to the energy for a single electron in the field of a
stationary nucleus with charge Z. (In the limit as 5 goes to infinity, K becomes the kinetic energy
given by the Laplacian, and V the Coulomb energy (given by a "l/r" potential) for such an
electron.) The present paper discusses the computational problem of getting a rigorous lower bound
on the negative eigenvalues of Q . As stated above, Fefferman is entirely responsible for
formulating the problem; in addition, he has been closely involved in the computational analysis and
some of what is reported here is joint work with him.

The actual problem is three-dimensional, but because it has spherical symmetry, it can be

reduced to a series of 1-dimensional problems. Write the vector y as yrl with y the length of

7 and i a u.-it vector. Then functions of the form u) = f(y)!Q(C) , where 92 is a spherical
harmonic of degree k, form an invariant subspace for each k, and the eigenvalue problem can be
looked at separately on each such subspace. Integration over the unit vectors results in an expression
for the energy as a quadratic form on the radial function f(y) given by the following formulas
derived by Fefferman. They are rather more complicated than the original 3-dimensional formulas

given in [21, but of course the reduction in dimension is worth the complication. The formulas
involve two regions of integration, denoted A and B, that correspond to whether or not the sphere
of radius y centered at the origin meets the boundary of the ball of radius R with center at distance
x from the origin, as shown in Figure 1.

- R

A: Ix-Rl<y<x+R B: O<y<R-x

Figure 1

By the eigenvalues of Q , we mean the eigenvalues of the operator A such that Q(u) =
(u,Au) , where (,) is the inner product on L2 of the ball where u is defined, so that N(u) =
(u,u) is the square of the L2 norm of u. For any quadratic form F, let v(F) be the maximum
dimension of subspaces on which F is negative definite. Then for any X , v(Q - %N) is the
number of eigenvalues of Q that are less than 7 , and the eigenvalues can be located by finding
where v jumps. Note that v is invariant under arbitrary linear changes of coordinates, not just
under unitary changes.

Q(u) is given as K(u) - V(u) where K corresponds to kinetic energy, and V to the
Coulomb potential. K, V, and N are homogeneous of different degrees in 8. Multiplying Q and
N by the same factor does not change v , and it is convenient to scale so that N(u) = 1 when u is
the constant function 1 . We give formulas below for 8 = 1 . Then in general, Q(u) =
8-2K(u) - 8- 1 V(u). (Actually the formulas below are valid only for a certain range of values of
8. For 8 > 1/6 , an additional parameter h that depends on 8 is introduced. V is modified by a
term depending on h , and the region of integration in the definition of K is restricted by the
additional inequality R < h. This makes the details a little more complicated but does not alter the
general nature of the calculation.)

Regardless of the value of k,

V(u) = zf (I -l+Y -+--)f(y 2 y2 dy

and

N(u) = 3- f(y) 2 y2 dy.

83

For the kinetic energy, K(u) =E(f,,x,R) dxdA

where the integral is taken over the region 0< x<lI ,O0< R< 2 -x and

E(fx,R) = fA [R2 - (X-y) 2lXy f(y) 2 dy + 4 f X2y2 f(y)2 dy

-3x
2R-3 G(fx,R)2 _ 15 (k+l)R-5 H(fx,R)2 - 15X2R-5 H'(fx,R) 2

where

G~fR = fA Y2 Mk(x,y,R) f(y) dy + (if k =0) 2fB y2 f(y) dy,

GfXR) = f~y2Nk(x,y,R) f(y) dy + (if k = 1) 1, fB xy3 f(y) dy

+ (fk =0) 2 f[R2 -X2 -y2 f(y) dy

H'(x,R) is the partial derivative of H(x,R) with respect to x ,

and Mk(x,y,R) = c' J_ PkCt) dt ,

Nk(x,y,R) = J [R2 - x2 - y2 + 2xyt] y2 Pk(t) dt
fms 6

where Pk(t) is the Legendre polynomial of degree k , and 0 is the angle shown in the diagram

above for region A, so cos 0 = (x2 + y2 - R2)/2xy .Note that, although the details are
complicated, the formula is quite elementary. Specifically, the functions are rational with
denominators that are simply products of powers of x, y, and R , and the regions of integration
are given by linear inequalities.

For simplicity, we have given formulas for quadratic forms. The associated bilinear forms

are given by the same formulas with f(y) 2 replaced by fl(y)f 2(y) and G(fx,R)2 , etc. replaced by
G(fj,x,R)G(f2 ,x,R), etc.

First approach

The restriction of Q to the finite dimensional subspace of L23 spanned by polynomials of
degree :5 m is described by a matrix whose entries are the values of the bilinear form on the
monomials f, (y) = yi , f2(y) = yj with 0 -5 i, j :5 m. Exact evaluation by symbolic integration,
first with respect to the y variables, then x , then R, is reasonably straightforward. For k =0

84

the answers take the form of a rational number plus a rational multiple of In(2), and for m as high
as 15, the rational numbers involved have an only moderately large number of digits. (For higher
values of k a few terms involving dilogarithms appear, but it is not difficult to separate them out for
special treatment.)

The monomials are a notoriously ill-conditioned basis for the space of polynomials,
however, and direct conversion to a floating-point matrix to use in a numerical eigen.alue routine
gives hopelessly inaccurate results for m greater than four or five. Changing to a basis of
orthogonal polynomials is a simple matter of matrix multiplication, but the number of digits needed
for exact rational representation became too large for symbolic calculation to be feasible even for
m = 8. The practical solution was to have Reduce put out numerical values with 40 significant
digits (using the "bigfloat" option) and then take these as input to a Fortran program which carried
out the change of basis using extended precision (28 hexadecimal digits). The result, even for
m = 15 , was a well-conditioned matrix accurate to at least 6 or 7 figures, on which a standard
eigenvalue package gave results of acceptable accuracy.

The negative eigenvalues obtained in this way of course depend on m ; they change more
and more slowly as m increases, and it seems clear that the limiting values are fairly close to the
values at m = 15 . The results are convincingly plausible, and are the basis for the tentative
conclusions announced in [2] . We could not, however, find any rigorous justification for the
extrapolation involved, and so looked for another approach. The results of the first approach were
important, however, in that the values obtained were such as to give some improvement over
previous methods in the results on the original problem and thus motivated further investigation.

Second approach

Formally, the formulas above for the kinetic energy can be integrated first with respect to x
and R, to obtain a result of the form

K(u) = 2 D(y)f(y) 2 dy + 2 fK(yl,y2) f(yi)f(y2) dyIdy 2

where the double integral is over the region 0 < YI < Y2 < 2. Here D is found by expressing the
contribution to K(u) from the first two terms in E(fx,R) as integrals over regions in yxR-space,

and integrating out x and R . For the term involving G(f,x,R) 2 , one writes G(fx,R)2 =
Gi(f,x,R)G2(f,x,R), where G1 and G2 are the same as G, but written using distinct variables of
integration YI , Y2 instead of y. The terms involving H and H' are treated similarly. The
contribution from all these terms is an integral in yly 2xR-space, and K(yl, Y2) is obtained by
integrating out x and R. (The formal integration presents no theoretical difficulties -- the practical
difficulties are the same as with the modified problem below and are commented on later.)

The aim is to get estimates from some sort of finite-dimensional approximation (polynomial
or piecewise linear, for example) to D and K. Unfortunately, D becomes infinite at y = 1 , and
K becomes infinite at the diagonal YI = Y2 for y2

< 1 in such a way that neither integral
converges, even if f is smooth. The problem does not come up in the first approach, because when
the integrations in y are done first, cancellations occur (if f is smooth) and the integral over x and
R converges even near R = 0, in spite of the R6 in the denominator.

85

The divergences disappear if the regions of integration are modified to require R > e > 0.

It turns out to be feasible to do the integrations with e as a parameter and analyze the behavior as e
tends to zero. The result is that if g(y) is defined to be f'(y) on (0,1) and (f(y)-f(1))/(y - 1) on
(1,2), then K(u) can be expressed as

j 15(y)g(y)2 dy + 2 fJK(Yt,y2 f(yl)f(y2) dyly 2

where the integrals converge for g in L2 . (The operator is related to the Laplacian, so the
appearance of f' is not surprising. This reformulation could perhaps have been found "by hand",
but the situation at y = 1 was not clear until the calculation was done.)

Even though tie integrals converge and define a bounded form, R is singular at (1,1) and
does not define a compact operator, so it does not have a good f'nite-dimensional approximation.

Using symbolic calculation, it is possible to write K as S + K' , where S is a fairly simple

expression embodying the singularity and K' is in L2 and does give a compact operator. S can be

analyzed theoretically, and it can be shown that b can be written as T + D', with T a small term
such that S and T together give a positive definite form. Discarding T and S will then lower the
eigenvalues, so a lower bound calculated using K' and D' will be a lower bound for the original
problem.

Note that g determines f only to within an additive constant. Because the kinetic energy is
zero for constant functions (a fact that is obvious in the three-dimensional formulation of [2],
although not apparent from the formulas given here) it has an expression in terms of g alone. V
and N do not vanish on constants, and to express them we have to use a = f(l) as well as g.
The result is that

N(u) = a2 + 2a f s(y)g(y) dy + f d(y)g(y)2 dy + ff k(ytY 2)g(yl)g(y 2) dyldy2

where s(y) = -y3 /8 on (0,1) and 3y2(y-1)/8 on (1,2)

d(y) = 0 on (0,1) and 3y 2(y-1)2/8 on (1,2)

k(yl,y 2) = min(yl,y 2)
3/8 on [0,1]x[0,1],

and V(u) is given by a similar (but more complicated) formula (in which the coefficient of a2 is no
longer 1).

The final result is that if 5 and X are fixed, we get an expression for Q - XN of the
form given just above for N, with s , d , and k linear combinations of the various expressions

given above, and we want to determine v(Q - 2N). The form is defined on pairs (a,g) , where a

is a number and g a function. A change of coordinates replacing a by a + f s(y)g(y) dy

eliminates the term in s , and changes k(y 1,y2) to k(y 1 ,y2) - s(Yt)s(y 2) . The value of v is

now the value of v for the form defined on g by d and the newly modified k , plus 1 if the

86

coefficient of a2 is negative (as it may be, depending on the values of 8 and X). As a final
(non-unitary) change of coordinates, replace g by gdtfl. In terms of this new g we have a form
Q' given as

Q'(g) = f g(y) 2 dy + f k'(yl,y2)g(yl)g(y2) dyldy2

where k'(yl,y 2) = d(yt)' 1 2 k(y1 ,Y2)d(y2) "t /2 . The kernel k' defines an operator P, and

v(Q') is the number of eigenvalues of P that are less than -1. Now k' is in L2 and can be
approximated in L2 by functions in a finite dimensional space (for example, piecewise linear

functions). In this way we get a finite-dimensional operator P' , and can in principle evaluate v
with a known possible error. In fact, sufficiently accurate results can be obtained using piecewise
linear functions with about 30 segments. For the sake of reasonable efficiency of computation,
symbolically generated formulas were converted to Pascal programs to carry out the numerical work.

Practical considerations

In the second approach, we essentially have to invert the order of integration in the formulas
given earlier. Getting K involves the most elaborate calculation; Figure 2 shows the regions of
integration in the xR-plane (x is the horizontal coordinate, R the vertical) that apply when
0 < yI < Y2 < I (case (i)). Similar but slightly different diagrams apply to three other cases: (ii)
1 <y 1 <y 2 <2 , (iii) y1

< 1 <Y 2 with Yl+y 2 <2,and(iv) yt<l <Y 2 with
YI + Y2 > 2. The a's , b's , etc., refer to terms of the integrand that are non-zero in regions
where the symbols appear. Terms with the suffix I involve y1 and those with the suffix 2 involve

Y2 ; in general, we need the sum of the integrals of al products of a term of type 1 and a term of
type 2. For example, the figure indicates that in case (i) the product bla2 is to be integrated over
the rectangle bounded by the lines x = 2 - R, x = R -y 2 , x = y 2 -R, and x = R -yj .

Each term to be integrated is a rational function of yl, Y2 , x, and R. As a function of x
and R , the denominator is simply a product of powers of x and R . Every limit of integration in x
is a linear function of y I, Y2 , and R , so the result of integrating over x is a rational function with

denominator a product of powers of such linear functions, plus terms involving logarithms.
Integrating over R then gives functions whose denominators involve linear functions of y, and
y2 , again with some logarithms. The factors that appear in denominators (sometimes to powers as
highas 6)arey1 ,y 2,y 1

+ y2,yl -y 2,yl - 1, Y2 - 1, y1
+ 1,y 2

+ 1, y1
+ 2,andy 2 +2. Any

attempt to add all the terms together over a common denominator chokes the system (and would give
an incomprehensible result anyway). Not collecting terms at all loses the benefit of considerable
cancellation. The workable approach appears to be to use partial fractions and combine terms whose
denominators are powers of the same factor. Setting up a program to keep track of everything

automatically is essential (there are too many items to keep track of by hand), but since the
denominator factors of each term are known when it is generated, the computation is not expensive.

In fact, it is appropriate to use a kind of partial fraction representation for functions (easily
implemented since list structures are now available in Reduce) instead of the conventional rational
form. A structure consisting of an offset d and a list of coefficients ci , i = 1, 2, ... represents the

proper fraction Z ci(x + d)- i , and a rational function (whose denominator has only linear factors)

87

x=2-RRegions of integration

2
when yl y2 1

x=R-y2

1 y2/2 IIbi

bx22
I I

I I

a2 a2R

bx2/ ~ ,/ x-y

al aal

yl bxl
bx2xR y

yl 2/2 a2 ax2.
b2

ali a2 '

ax2 1y

xbxl- x=y2-R

Figure 2

88

is then uniquely represented as the sum of a polynomial and proper fractions with distinct offsets. In
addition, one needs to represent rational function multiples of a small number of special terms such
as logarithms. Formal integration for functions in this representation is quite easy and can perhaps
be done more efficiently than with the standard package, which must spend a lot of time converting
to and from a partial fraction form. Whether this potential gain in efficiency is actually realized,
however, has not been checked experimentally.

When k = 0, the final result is four similar sets of formulas, one for each of the cases
(i)-(iv) above, each of which fits on one page if printed in a 10-point font. The numerical
coefficients are integers of which very few have more than six digits, and many have only three or
four. For higher values of k the formulas become a little more complicated, and the coefficients get
a little larger. (It is hoped that k > 3 need not be considered, but this has not yet been proved.)

Error control

The main point of this computation is to obtain results that are provably correct. To what
extent is this possible?

Symbolic calculation reduces the problem to a form in which truncation error can be bounded
in terms of derivatives of explicitly given functions, and which is not highly sensitive to round-off
error. Fairly straightforward arguments, aided by a little interval arithmetic, give satisfactory control
of the "numerical analysis" error.

Certifying the correctness of the symbolic calculation remains a non-trivial problem. In part,
this is no different from justifying a calculation done by hand. First, one is careful; second, one
shows the work to a constructively skeptical colleague (if available); finally, enough details are
exposed to public view to allow independent checking. This is all that is available to check the
original formulas, scaling factors, and the like. It is also available, or should be in some form, for
the ad h "ams written to do the calculation. (Interactive work with no audit trail is fine for
explorat v ot much use for producing verifiable results.)

Even ir one, -en pains to make sure of the correctness of one's own programming, there
remains the question ot iwv much a system like Reduce is to be trusted. I am personally confident
that rational function manipulation and formal differentiation work properly all the time. They are
used a great deal and the algorithms are well understood. Integration in Reduce appears to work very
well, and I have nver found it to be in error, but it does not inspire quite the same confidence.
Factorization seems to be basically reliable, but I once spent several days tracking down an
inconsistency that came up because in some cases the product of the factors found for a polynomial
was the negative of the polynomial (an error that has been corrected in the present version of
Reduce). Fortunately, the results of integration and factorization can be checked by differentiating
and multiplying, and it is easy to make the check automatic.

There are also cases where the system makes no error, but the result cannot be used without
correction. For example, the integral of dx/(2-x) comes out as -log(x-2) even if one is working
in the interval (0,2).

There are special hazards in a project of the present kind that involves transfer of symbolic
results to a numerical program. The input/output conventions involving line length and the handling
of expressions extending over multiple lines can produce errors that are sometimes "invisible" in the

89

sense that they are syntactically legal. Hand editing needed, for example, to break up expressions
too long to be handled in one statement by the Pascal compiler involves additional risks. With full-
screen editors it is all too easy to alter a digit in the middle of the screen accidentally when intending
to enter a command. Spot checks done by evaluating a formula for a few numbers in both systems
give some reassurance. A stronger check used in the current project is to transfer the Pascal
statements back to Reduce and verify that they compute the sane symbolic values. (This is not
difficult to do, thanks in part to the similarity of Pascal and Reduce syntax.)

The most complicated and error-prone part of the present work comes in calculating the
kernel functions for the second approach. Fortunately, a very convincing check is available. With a
little trouble, the form can be evaluated by exact symbolic calculation on the functions yi , yj for
several values of i and j using the second approach. and the results compared with the same
calculation using the first approach. The trouble is well worth taking. The procedure provides very
convincing evidence of correctness and, if the truth be told, has exposed and aided in the diagnosis
of several errors.

References

[1] F. Dyson and A. Lenard, Stability of matter 1, 11, J. Math. Phys. 8, 1967, pp. 423-434 and
9, 1968, pp. 698-711.

[2] C. Fefferman, The N-body problem in quantum mechanics, Commun. Pure Appl. Math. 39
(Supplement), 1986, pp. S67-S109.

[31 E. Lieb, The number of bound states of one-body Schrodinger operators and the Weyl
problem, AMS Proc. Symp. Pure Math. 36, 1980, pp. 241-252.

[4] E. Lieb and W. Thirring, Bound for the kinetic energy of fermions which proves the stability
of matter, Phys. Rev. Lett. 35, 1975, pp. 687-689.

90

!

Computer Algebraic Methods for Investigating
Plane Differential Sy:,tems of Center and Focus Type

Dongming Wang

Institute of Systems Science
Academia Sinica

Beijing 100080, China

Abstract
For plane differential systems of center and focus type, the author described an algorithmic
procedure based on the principle of Poincar6's method and implemented a program DEMS
for computing the Liapunov function and Liapunov constants. This function and these con-
stants are used in the study of stability criteria, differentiation between center and focus and
the construction of limit cycles. The solutions of the problems concerning the investigation
of Liapunov constants then require that algebraic decision problem, algebraic simplification
and algebraic equations solving, to which Wu's characteristic set method and Buchberger's
Gribner basis method are successfully applied. Using the program DEMS and these com-
puter algebraic methods, the author studied some concrete differential systems and obtained
the stability criteria and the relations between the computed Liapunov constants and other
conditions. In particular, we discovered that Kukles' conditions for the existence of a center
for a type of cubic differential systems are possibly incomplete, and presented a class of cubic
differential systems with the origin as a 6-tuple focus from which one can create 6 limit cycles
by a small perturbation. This paper is a summarization of our recent work.

1. Method and Program for Computing Liapunov Function
and Liapunov Constants

For plane autonomous differential system

(1.1) dx dy

xa+by+P(x,y), dt= c+dy+Q(x,y),

where P(x,y) and Q(x,y) are analytic functions beginning with terms of degree
greater than 1, if the characteristic equation has no real roots, then the origin is
either a center or a focal point. The origin is a center only if the characteristic roots
are a pair of purely imaginary numbers, i.e., p = a + d = 0, q = ad - bc > 0. In
the case where the roots are purely imaginary, the system (1.1) is called to be of
center and focus type. The investigation of the stability criteria, the differentiation
between a center and a focal point, the construction and the number of limit cycles in

this critical case occupy a very important position in the study of plane differential
systems, since it is closely related to Hilbert's 16th problem [5] and Arnold's problem
[2]. If P(x, y) and Q(x, y) are polynomials of degree n, we then call the system (1.1)
an n-differential system.

In what follows, we consider only the case of center and focus type and suppose
the system (1.1) is reduced by an appropriate nonsingular transformation to the form

dx Y-[+ P2(X, Y) + ' + P.(X, Y) + . ,
(1.2)

dyt d-i _X- + Q2(, Y) +.. + Q (, Y) +" .
dt

where Pi(x, y) and Qi(x, y) are homogenous polynomials of degree i. Applying the
algorithmic method introduced by Poincar6 [9], we may thus construct a Liapunov
function F(x, y) of system (1.2), requiring only the solution of algebraic equations.
To do this, let

00

F(x, y) = ZFj(x, y)
j=2

and

F2(x, y) =(x 2 + Y)), F1 = fjkxY, j > 2.
2 k=O

Obviously, the function F(x, y) is positive near the origin. Differentiating F(x, y)
along the integral curve of (1.2) with respect to t, we have

dF(x, y) = OF(x, y) dx + OF(x, y) dy

dt Ox dt Oy dt

coU,. 00 00 OF 00
E - (y + (P) + . -- x + Q,)

O=2 i=2 j=2 Oy i=2

Z-,OF+l al+, -(¢-.,O :+2,. 0 -i+2 ,E[3+,i"1'-Y - -E:. X 1 + + L ± i)J,

j=2 9X 5Y i=2 ax ' Y

in which Fi = 0 for i < 2. Setting

(1.3) dF(x, y) 4 6
(.)di v 311 + v sy +"" + v2 +1 Y2 ' 2 + ' ""

and equating the coefficients of powers of x and y in this equality, then up to any
homogenous terms of degree 2h, we obtain a system of (h + 1)(2h + 1) - 6 linear

equations in 2(h+ 1)2- 8 variables fij, j = 0,..., i, i = 3,...,2h and 3 , ... , v 2 -. This
system of linear equations has at least a set of polynomial solutions, in the inderter-

minate coefficients of each Pi, Qj, i = 2, ... ,2h, as variables with rational coefficients.
In fact, the coefficients fio, fil, ..., fhi of homogenous terms of degree i, and vi-. when
i is even, may be successively evaluated (see [9]).

92

...__---------,. -- -

The above computed F(x, y) is called a Liapunov function of system (1.2). Each
V 2 1+1 found from the linear equations is called the jth Liapunov constant. Again, the
origin is called an m-tuple focus of differential system(1 .2) if the first m- I Liapunov

constants of the system are 0 but the mth one is not. If all Liapunov constants of
the system are 0, the origin is said to be a center.

Based on the above procedure, the author implemented a program DEMS for com-
puting the Liapunov function and Liapunov constants on an HPI000 using Fortran77
and in the computer algebra system Scratchpad II on an IBM4341 112, 13). This
program has been applied to compute the Liapunov conste nts of various concrete
differential systems. The obtained constants are also used for the study of stability
criteria, center and focus decision, and the construction and number of limit cycles
[6,12-15).

2. The Investigation of Liapunov Constants Using Computer
Algebraic Methods

According to Liapunov's stability theorem, for the differential system (1.2) the
stability of the origin may be determined by the sign of dF(x,y)/dt, i.e., the ori-
gin is unstable when dF(x,y)/dt > 0; the origin is asymptotically stable when

dF(x, y)/dt < 0; the origin is a center (stable but not asymptotically stable) when
dF(a(, y)/dt = 0. Thus the stability of the origin may be successively determined by
the signs of v3, vs,. ..

From this criteria, we know that the differentiation between a center and a focal
point requires usually infinitely many operations. If (1.2) is an n-differential system,
the required infinitely many conditions v2i+1 = 0,j = 1,2,..., relate but only to
a finite number of indeterminates. The ideal consisting of the polynomials whose
vanishing is both a necessary and a sufficient condition for the existence of a center,

has a finite basis. Hence there is a minimal integral valued function N(n) such that
all the conditions v2j+l = 0 for j > N(n) are formal consequences of such conditions
for j < N(n). In order to make an effective use of the criteria, the problem for
determining such a minimal N(n) is undoubtedly important. This problem has not
jet been solved up to now.

However, it is necessary to consider V2j+l in the stability criteria only when v3

v s = . = v2j- 1 = 0. Since the computed Liapunov constants are always too
complicated to be applied to the stability criteria, if v2j+l = 0 is not a consequence
of the condition v3 = v= =V2j-1 = 0, the next indispensable step is to simplify
v2i+l using this condition. On the other hand, if v 3 = v5 = . v(,) = 0, which is
certainly complicated too, and possibly, does not have real solutions, is a necessary

and sufficient condition for the existence of a center, then finding an equivalent but
simpler condition instead of it is, of course, important.

For constructing the limit cycles, we have to investigate the multiplicity of the
focus and search into the particular differential systems with higher multiple foci. A

93

fundamental theorem [1] indicates that if the multiplicity of a focus of the differential
system (1.2) is m, then one can create in, and at most m, limit cycles from the
focus by a small perturbation. In view of these reasons, we suggest the following four
problems:

1. Decide whether the condition v2i+l = 0 is a formal consequence of the condition
V3 -= VS = "=V2j-l = 0;

2. If v2i+l = 0 is not a consequence of v 3 = vs = .. v2j- = 0, simplify V.j+l
by using v3 = vs v2i-1 0;

S. Find an equivalent but simpler condition instead of the condition v3 = v.=
...vV(n) = 0;

4. Find a particular differential system such that v3 = v = v2j-1 = 0 but
v2j+1 5 0.

If the coefficients of P(x, y) and Q(x, y) satisfy certain known conditions given
by sets of algebraic equations, we then have naturally a problem for determining
the inferable relations between the given conditions and the Liapunov constants.
Evidently, a complete solution of this problem is directly from that of problem 1.

For solving the above problems, we described several algorithms based on the algo-
rithmic principles of the characteristic set method developed by Wu [16] and Grbbner
basis method developed by Buchberger [4]. Problem 1 is actually an algebraic deci-
sion problem for determining whether a non-zero polynomial vanishes on an algebraic
variety defined by a set of polynomial equations. By Hilbert Nullstellensatz, this
problem is also equivalent to deciding whether a polynomial belongs to a radical ideal
generated by the set of polynomials. Hence it may be completely solved by either the
characteristic set method or Grbbner basis method.

In fact, let (PS) be the polynomial set consisting of v3, V, j-1 and y be a
new inderterminate. To solve problem 1, we then need only determine whether the
polynomial set (PS) U {y . v2j+l - 1} has no zeros by the algorithm described in Wu's
zero structure theorem, or to check whether the Gr~bner basis of (PS)U {y.v 23+1 -1)
includes 1. Similarly, we may also compute the characteristic series of (PS) and check
if the remainders of v2j+l with respect to all ascending sets in the characteristic sedes
are 0, or compute the Gr~bner basis of (PS) and check whether the normal form of
certain powers of v2j+l with respect to the Grbbner basis is 0. Aided by polynomial
factorization and the bound of power in Hilbert Nullstellensatz, problem 1 can be
completely solved. For detailed discussions, see [15].

The problems 2 and 3 are problems concerning algebraic simplification, one of the
basic techniques in algebraic manipulation. For computing unique representations of
equivalent objects, there have been a lot of exciting results. However, for obtaining
equivalent but simpler objects, the investigation is perplexing and seemingly more

94

difficult. Fortunately, for simplifying our obtained Liapunov constants, both the
algorithmic principles of the characteristic set method and Gr~bner basis method
may be successfully applied.

To fix idea, we define for a non-zero polynomial F that

mt(F) = min . term(f),F=y *I ... f" 1=l

in which each term(fi) is the number of terms of polynomial fi, and choose mrt(F)
as the measure of F's complexity. A polynomial F is said to be simpler than the
polynomial G if mt(F) < mt(G). For a polynomial set (PS) we define mt(PS) to be
the sum of all mt(F) for F in (PS). Then the concept simpler for polynomial sets
or systems of polynomial sets is similarly defined. Again, the totality of zeros of all
polynomials in a polynomial set (PS) will be denoted by Zero(PS). If G is any other
non-zero polynomial, then the subset of Zero(PS) for which G 96 0 will be denoted by
Zero(PS/G). Under these definitions, we consider the following alternative problems
instead of the problems 2 and 3.

9. For a given polynomial set (PS) and a non-zero polynomial g, find two polyno-
mial sets (HS) = {hl,..., hr} and (DS) = {DI,..., Dt} such that (HS) U (DS)
is simpler than g and

Zero(PS) = U Zero(PS/J,),
i=1

g - hilzero(Psi/JO) = 0, i = 1,...,r,

where (PSi) = (PS) U {Dj j ei}, Ji = I'j and index sets ce,1fl C
{i,...,t}.

3'. For a given polynomial set (PS), find a system of polynomial sets % = {(PSI),
..., (PS,.)} and another polynomial set (DS) = {D 1, ..., Dj} such that TI U (DS)
is simpler than (PS) and

Zero(PS) = U Zero(PSj/JJ),
i=l

where Ji = fi Dj and ai C {1, ... , t}.

In the case (DS) = ¢ and r = 1, the above problem 2' is actually to find a
polynomial h simpler than g such that g and h are equivalent modulo Zero(PS), and
problem 3' is to find another polynomial set (PS) with the same zeros as, but simpler
than (PS). Based on the algorithmic principles of characteristic set method and
Gr5bner basis method, some algorithms for solving these problems were presented in
[15]. By those algorithms the computed Liapunov constants may be greatly simplified.

95

Since all v3, VS, ... , v2j+l are polynomials in variables xl,..., x., the indeterminate
coefficients of P and Qj, with rational coefficients, then problem 4 is equivalent to
finding a solution xi = x9, i = 1,...,e and c = c° 0 0 of the polynomial equations
V 3 = 0, ... , v2j- 1 = 0, V2j+ = c in a certain extension field of Q (especially, Q itself or
real field R). This solution may be found by any known methods. Generally speaking,
only in the complex field the known methods can completely determine the solvability
of algebraic equations. For our purpose, the solutions to be found basically have to
be in Q, R or a transcendental extension field of Q. This makes the problem related
to the decision problems for polynomial definiteness and Diophantos equation and
thus uneasy to be solved immediately. On the other hand, the Liapunov constants
computed from the given differential systems consist of many terms and usually, are
very complicated. Hence it is almost impossible to solve such a set of algebraic
equations using the known methods even on a big computer. However for our present
concrete problems, we do not attempt to find all solutions of the equations and thus
may use some specific techniques and do appropriate experiments to overcome a part
of the difficulty. Combining with Wu's method, Buchberger's method and necessary
trial, some particular differential systems with higher multiple focus have been found
(see next section).

3. Some Concrete Results

Our program for computing Liapunov constants and the computer algebraic meth-
ods for solving the suggested problems have been applied to the investigation of some
concrete differential systems. In this section, we sum up a part of our obtained
results. For quadratic differential systems, t'e first three Liapunov constants were
already given by Bautin in 1952 and N(2) was also proved to be 3. Using our program
DEMS, we may easily obtain these constants and recheck the sign error of Bautin's
results.

For a particular cubic differential system of which the homogenous terms of de-
gree 2 do not appear, we computed the Liapunov constants and obtained the rela-
tions between these constants and the conditions for the existence of a center given
by Saharnikov [10]. We thus rediscovered independently the incompleteness of Sa-
harnikov's conditions [12]. In fact, this error was already discovered by Sibirskii [11]
early in 1965. For this particular system, let M be the minimal integer such that all
the conditions v2 1.~ = 0 for j > M are formal consequences of such conditions for
j < M. Then Sibirskii proved M = 5, which implies N(3) _ 5. However, our com-
puted Liapunov constants are still useful to the stability criteria and the construction
of limit cycles.

In the case P2(x,y) = ... = P,(x,y) = 0 of n-differential system, Kukles [7]
established certain criteriafor the existence of a center. He applied his criteria to the
cases n = 3,5 and got the necessary and sufficient conditions for the existence of a
center. For n = 3 and writing Q2 = a20X2 + alixy + a02y2, Q3 = a3ox 3 + a2lX2y +

96

a12xy 2 + a03y3, Kukles' conditions are given by four sets of algebraic equations [9].
For this cubic differential system, the first five Liapunov constants consisting of 4, 19,
76, 218 and 527-terms were computed by the program DEMS. They may be simplified
to be polynomials consisting of at most 4, 11, 30, 71 and 168 terms respectively. By
investigating the relations between these constants and Kukles' conditions, Jin and
the present author discovered that Kukles' conditions are possibly incomplete [6]. In
particular, let

1 1
a11 = 0, a 12 = 0, a21 = -3a0 3, a20 = -- a02, a30 -- 2a2 2,

and 288a2- a 2 = 0, a03ao2 0 0, then v3 = vs = . V7 - 0 but none of Kukles'
conditions holds. Hence either Kukles' conditions for the existence of a center are
incomplete, or for this particular system the multiplicity of the origin as a focus is
greater than or equal to 9. It seems that the origin is impossible to be a focus in this
case and thus Kukles' conditions are incomplete. We conjecture that for this cubic
differential system considered by Kukles, v2i+l for j >_ 6 are formal consequences of
V3 =v 5 =. -V11 i=0.

By solving algebraic equations and aided with appropriate experiments, we pre-
sented in [14] a particular cubic differential system of the form

d - ax2
- 2bxy + ay2

- Cx3 + (7A - 6B)X2y + 5Cxy2 - (A - 2B)y3,

(3.1)
d- = -x - bX2 + 2axy + by 2 - Ax 3

- 5 Cx2y + (7A - 8B)xy 2 + Cy3,
Tt 3

for which the first four Liapunov constants are computed to be 0 and the next two
are =4 4 8 ,(2 + 2

V 89 6

6= 273a ++ llBJw, V13 = 15 63 70 5 A ,

where A is a polynomial consisting of 11 terms in variables a, b, A, B, C with integer
coefficients and

W = -(a 2
- b)C[C 2

- 27(A - B)2] + 18ab(A - B)[C 2 - 3(A - B)
2].

Moreover, we have
14336 =w

Vl312a 2+2 2+1B~o = 62799435
in which r is a positive polynomial consisting of 7 terms.

Hence for the differential system (3.1), if 2a 2 4- 2b2 + llB = 0 but w - 0, then the
origin is a 6-tuple focus, from which we can thus create 6 limit cycles [14]. We guess
that in the case w = 0 the origin is a center of this differential system. This guess was
proved in the case C = 0. For differential system (3.1), if we let M be the minimal
integer such that all the conditions v2j+ = 0 for j> M are formal consequences of
such conditions for j < M, then our results show M >6 (M =6 in the case C =0),

97

and thus show N(3) > 6. For this particular system, some stability criteria of the
origin were also given in (14].

Note that the probem for deciding the maximal number of limit cycles of the
plane n-differential system was proposed by Hilbert in 1900 as the second part of his
16th problem (5]. This problem has gained little progress in the past 88 years. If
we denote the maximal numbers of limit cycles around the origin and on the whole
plane of n-differentail system by Ho(n) and H(n) respectively, then the known results
are only Ho(2) = N(2) = 3, 4 _< H(2) < oo, Ho(3) = N(3) >_ 6, H(3) > 11 and
H(n) >_ Ho(n) = N(n). So far in any other cases the problem remains open.

Due to the restriction of our computer memory, the Liapunov constants for general
cubic differential system were unable to be computed and the stability criteria thus
have not yet been given. It is very hopeful to get the complete results on a big
computer now or in the near future. However, the described computer algebraic
methods should make a step of progress in the study of this problem, especially for
some concrete systems.

Acknowledgement

This work is partly done during my visit at NTZ, Karl-Marx University. I am grateful
to Professor Wolfgang Lassner for the invitation.

References

[1] A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Theory of Bi-
furcations of Dynamic Systems on a Plane, Israel Program for Scientific Trans-
lations, Jerusalem, 1971.

[2] V. I. Arnold et al, Problems of Present Day Mathematics, Mathematical De-
velopments Arising from Hilbert Problems, Proceedings of Symposia in Pure
Mathematics, Amer. Math. Soc., 28(1976), 35-80.

[3] N. N. Bautin, On the Number of Limit Cycles Which Appear with the Variation
of Coefficients from an Equilibrium Position of Focus or Center Type (in Rus-
sian), Matematiceskii Sbornik (N.S.), 30(1952), 72, 181-196. Also in Stability
and Dynamic Systems, Translations, Series one, Amer. Math. Soc., 5(1962),
396-413.

[4] B. Buchberger, Gr6bner Bases: An Algorithmic Method in Polynomial Ideal
Theory, Multidimensional Systems Theory (N. K. Bose ed.), Reidel Publishing
Company, Dordrecht-Boston-Lancaster, 1985, 184-232.

[5] D. 'Iilbert, Math~matische Probleme, Archiv der Math. u Phys. (3), 1(1901),

44-63; 213-237.

98

________I

[6] X. F. Jin and D. M. Wang, On Kukles' Conditions for the Existence of a Center,
Submitted to Bulletin of London Mathematical Society, September 1988.

[7] I. S. Kukles, Sur les conditions ndcessaires et suffisantes pour 1'existence d'un
centre, Doklady Akad. Nauk, 42(1944), 160-163.

[8] , Sur quelques cas de distinction entre un foyer et un centre, Doklady
Akad. Nauk, 42(1944), 208-211.

[9] V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equa-
tions, Princeton University Press, New Jersey, 1960.

[10] N. A. Saharnikov, Solution of the Problem of the Center and the Focus in One
Case (in Russian), Akad. Nauk SSSR. Prikl. Mat. Meh., 14(1950), 651-658.

[11] K. S. Sibirskii, On the Number of Limit Cycles in the Neighborhood of a Singular
Point (in Russian), Differencial'nye Uravnenija, 1(1965), 53-66.

[12] D. M. Wang, Mechanical Approach for Polynomial Set and its Related Fields
(in Chinese), Ph.D thesis, Academia Sinica, July 1987.

[13] , Mechanical Manipulation for a Class of Differ'ential Systems, Sub-
mitted to J. of Symbolic Computation, May 1988.

[14] , A Class of Cubic Differential Systems with 6-tuple Focus, Sub-
mitted to J. of Differential Equations, July 1988.

[15] , The Applications of Characteristic Sets and Gr6bner Bases to
Problems Concerning Liapunov Constants, RISC-LINZ Series no. 88-49.0, Jo-
hannes Kepler University, September 1988.

[16] W. T. Wu, Basic Principles of Mechanical Theorem Proving in Elementary
Geometries, J. Sys. Sci. & Math. Scis., 4(1984), 207-235. Also in J. of
Auotmated Reasoning, 2(1986), 221-252.

99

An Example of Computer Enhanced Analysis

Peter J. Costa and Ruth Hampton Westlake
Raytheon Conpany, 430 Boston Post Road, Wayland, MA 01778

Abstract. In this report, a first order nonlinear partial differential equation with a parameter
dependent initial condition is examined Even though an analytic solution of the equation is
determined, a surprising bifurcation phenomenon is discovered via computer graphics, This
"computer-discovered" bifurcation, in turn, leads to further mathematical analysis and deeper
geometric understanding of the solution. Indeed, this is a simple example of an elementary catastrophe
(in the sense of Thon) and demonstrates the usefulness of numerical computations in providing
qualitative information even in the presence of exact solutions.

§1 The Problem

Equation (1.1), with initial condition (1.2), is studied in nonlinear optics where a acts as a
"lens focusing" parameter.

au = jluTU x] (ax)

u (x, 0) = sin (ax) (1.2)

The solution of (1.1) - (1.2) is a straightforward exercise in the theory of characteristic curves. More
precisely, let p = LU au,

a.x q = y z = u (x, y), X (x) = u (x, 0), and y (x) = %'(x). Let F (x, y, z, p,
q) = 0 describe (1.1) and let p (x) be the solution of F (x, 0, X (x), y (x), Vi (x)) = 0. In this case,
F = p2 + q,), (x) = sin (ax), y (x) = a cos (ax), and (x)- a2 cos2 (ax).

If one solves the following system (1.3) of ordinary differential equations, then a parame-
terized solution of (1.1) - (1.2) is obtained. For complete details, see e.g., John [4] or Zachmanoglou
and Thoe [7].

dx OF1 (1.3a)
x(0) = s

dt- q (1.3b)
y(0) = 0

dz aF aF dt p TP ' + q T- (1.3c)

z(O) = X(s) = sin (as)

OF aF -

dt ax ~(1.3d)

p (0) = y(s) = acos (as)

OF OF
dt " - '"~ I(1.3e)

q(0) = V = - a2 cos 2 (as)

Equations (1.3a) - (1.3e) determine a complete system for (1.1) - (1.2) with solution z = u (x, y),
parameterized by s and t, given below.

x = X(s, t), y=Y(s, t), z=Z(s, t), p=P(s, t). q=Q(s,t) (1.4)

From (1.4) it is seen that

z = U (s, t) = u (X (s, t), Y (s, t)) (1.5)

is the parameterized solution.

§2 Solution and Bifurcation

Integration of equations (1.3a) - (1.3e) yields the parameterization

x = X(s,t) = 2atcos(as) + s

y = Y(s,t) = t

z = Z(s, t) = a 2 t cos 2 .(as) + sin (as) (2.1)

p = P(s,t) = acos(as)

q = Q(s,t) = - a2 cos2 (as)

Therefore, the desired solution of (1.1) - (1.2) is

x = x (= 2ay cos (as)+s 1
(2.2)

u (x, y) = u (x (s), y) = a 2 y cos2 (as) + sin (cts)J

To gain insight into the geometry of the solution, we employed a computer to graph (2.2) for varying

values of a. We kept y fixed (y = 1) and took s E [- n, t]. For 0 < a < 1, the solution (2.2)

exhibits no remarkable behavior. See Fig. 1. For a = 1, however, the derivative of the solution
with respect to x becomes nonunique for x - 1; i.e., u loses smoothness. See Fig. 2. For a = 2,

not only does u lose smoothness but also becomes multivalued. As a increases so does the number of
nondifferentiable points and number of multivalued solutions. See Figs. 3 - 6.

Furthermore, for a > 1, we observe that u has locally minimal values of - 1 and 1. Numerical
investigations led to the metatheorem following Figs. 1 - 6.

101

I

m e

-e.9

6.0.. ' r. .

x

Figure 1. Single-valued solution (cc 0.5)

0.6-

0e.2

-0.0-

_..

-80 -. 4.6 -2.0 0.0 Z.- 4.le .0' 9. 10.

Figure 2. Single-valued solution; u is not differentiable near x =1.0 (a 1 10)

102

2.5_

2.8-

1.87

8.0

8.-

-.

-1. -8. - . -4.0 -2.0 ---8 . 8 4.8 0 6.8 88 1.

X

Figure . TrpevleSolution , fihsiaue;sven nondiffcrntiable points (a 3. 20)

3.83

5.8-

4.0-

3.8-

i.e

81.0

-i.e -. 0.e -6.8 -4.8 -2.8 e 0 2.0 4-.8 9 6.0 8.8e 18.0

x

Figure 5. Solution with eight values; nine nondifferentiable points (a =4.0)

25.8

5S.8

-16. re-6 . -i4.8:. -2.8 8.8 2.8' 4.0 6.8 7.8 64.

x

Figure 6. Solution with fourteen values; fifteen nondifferentiable, points (a =7. 0)

104

Empirical Result: For 0 < a < 1, (2.2) yields a smooth (i.e., CI) solution of (1.1) - (1.2). For
a z 1, (2.2) is a continuous, multivalued, not everywhere differentiable function with locally minimal
values of - 1 and 1. Moreover, for a = 3, 4, 5, ... , the number of multivalued solutions is 2a, and
the number of nondifferentiable points is 2a + 1, s C [- n, 7c]. For a = 2, u has 3 values and 5
nondifferentiable points, s e [- x, a].

The (incomplete) bifurcation diagram for (2.2) is given in Fig. 7.

a

Figure 7. Bifurcation of u as a function of a

The natural question to ask is "What accounts for these effects?" To answer this query, further
mathematical analysis is required and discussed in the next section.

§3 Hamilton-Jacobi Equations and Conservation Laws

Following Strang [5, 6], let v = . Then the Hamilton-Jacobi equation (1.1) is equivalent to
the Conservation Law

O v Ov^
-2vv= 0 (3.1)

By a direct application of the chain rule, it can be seen that vo(x) -- .x, 0) a cos (ax). The
solution of (3.1) then is given implicitly by

v(x, y) = Vo(x - 2yv) = a cos (a [x - 2yv]) (3.2)

Since the solution surface (2.2) apparently is-not smooth in x, it seems reasonable to examine the
characteristic lines of the implicit solution for 2. That is, consider the family of lines

x - 2yv = constant (3.3)

105

Each characteristic line or pulse starts at the point x = x* when y = 0. Therefore, (3.3) is equivalent
to

y =2(xx*) (3.4)

where v* = vo(x*) = a cos (ax*). As x* is arbitrary, let it take the value n. Then the siopes of the
characteristic lines, as a function of the parameter a, are given by the formula below.

1 1(35

ma = 2v* 2a cos (an) (3.5)

§4 Geometry, Computing, and Analysis

Consider the graphs of the characteristic lines (3.4) with x* = n and the slope ma -2v

given in (3.5). For 0 < a < , the slopes ma decrease from + - to some mao - 2.8 =

Then the slopes ma "fold over" and begin to increase back up to +cc:, .< a < implies
4 2

2.8 < ma < + -. At a a catastrophe" occurs as Ma changes signs from + to - The

opposite occurs for " < a < 1.1. In this case, -co < ma < mal where ma1 > 1 1 0.48.

For some a1 z 1.1, the ma begin to decrease: 1.1 <5 a 1 < a < 1.5 implies -c < ma
<- 0.48 < Mal. Again, the "fold over" effect occurs. See Fig. 8.

a-0
a - 0.5 a-0.1

a- -0.2
a - 0.25

a - a0

a = 0.375
y = ma(x -n)

2n

~ a a-a 1

a - 1.1
a - 0.5 a - 0.75a -I J a - 0.51

Figure 8. Slopes of Characteristic Lines (0.0 < a < 1.5)

106

2

Asimilarpattern ocurs for 1.5 < a < a2, for some a2a 2.0: The slopes decrease from

+ to me 2. Then the slopes ma begin to increase again toward +oo as 2.0 < a < 2.5:

ma < + co. For 2.5 < a < 3.5, the slope changes signs, reaches a maximum value, and then

decreases again toward - o. See Fig. 9.

4 L a -1.51

a - 1.5

a - 2.45 y= m(x -n)

t3

a -2.5

Sa 3.5 a
-- 2.51

Figure 9. Slopes of Characteristic Lines (1.5 < a < 3.5)

Our computations once again give us insight into the qualitative behavior of the solution surface

(2.2). Namely, the smoothness of the derivative L- is destroyed for certain values of a since the

slopes of the characteristic lines (of L-) change signs. Hence, the points where u loses differen-

tiability (i.e., smoothness) can be determined as a function of a.

Plainly, as a - oo, ma - 0 and the characteristic rays (of fixed length) fill in a semicircle in
the right half plane. Moreover, the change in signs of the ma can be modelled as an elementary
catastrophe in the sense of Thom (see Ekeland [3]). In this case, the catastrophe is a cusp, as
represented in Fig. 10 below.

§6 Summary

Our computations have enlightened oiur understanding of the qualitative nature of our solution,
by showing us that the solution surface (2.2) has nondifferentiable points and multiple values for
different values of a. Whereas, our analysis has enhanced and explained the results of some of our

107

computations. Such a rewarding symbiosis should not be overlooked. Indeed, that is the general
thrust of this repoit: Th give an example of a "simple" nonlincar partial differential equation with
complex behavior whose qualitative nature is enhanced by computing.

Figure 10. Cusp: As the slopes ma change sign

Bibliography

[1] G. FE Carey, B. N. Jiang, and R. Showalter. A Regularization-Stabilization Tec'Inique fil
Nonlinear Conservation Equation Compoutations, Num. Methods for Par. Diff. Eqns., Vol. 4,
No. 3, pp. 165-171, Fall 1988.

[2] P. J. Costa. An Explicit Solution of a First OrderANonlinear Partial Diffetential Equation. MIT
Lincoln Laboratory Techuiical Memorandum No. 34L-0016, 9 June 1986.

[3] 1. Ekeland. Mazthematics and the Unexpected, Univ ersity of Chicago Press, 1988.

[4] F. John. PartialDiffetential Equations, Fourth Edition, Springer-Verlag, 1982.

[5 r C . S.,ang. InlotkttApplied-Matheniatics, Wellesley-Cambridge Press, 1986.

[6] G. Strang. P~rivate communication, 1988.

[7] E. C. Zachmanoglou and D. Thoe. Introduction to Partial Differential Equations, Williams &
Wilkins Company, 1976.

108

An Algorithm for Symbolic Computation
of Hopf Bifurcation

Emilio Freire, Estanislao Gamero, Enrique Ponce

Department of Applied Mathematics, University of Sevilla, Spain

Abstract. The Hopf bifurcation has become a widely used method in the study of periodic
oscillations of nonlinear dynamical systems. The purpose of-this paper is not to carry out a
direct symbolic algebraic manipulation of formulae characterizing thi, bifurcation (direction,
stability and amplitudes of bifurcating periodic orbits, ...). It is planned to develop a recursive
algorithm well suited to symbolic computation implementation, which is based upon the nor-
rnal form approach and supplies the necessary information to characterize generalized Hopf
bifarcations.

An efficient procedure to obtain the normal forrm corresponding to a Hopf bifurcation is
presented; it is based upon the use of Lie transforms. The caleulations are arranged in a
recursive scheme using complex variables and so the computational effort is optimized. The
devised algorithm is implemented on REDUCE 3.2 and applied to severalezamples.

1. Introduction

The Hopf bifurcation has become a widely used method in the study of periodic oscillations
of nonlinear dynamical systems. Several authors ([4], (61, [71, (9], (10]) have derived formulae
characterizing this bifurcation (direction, stability and amplitudes of bifurcating periodic or-
bits, ...). Center manifold reductions and normal form transformations are useful techniques
to obtain those formulae ([6],[7]). There are other possibilities as. for example, the application
of Lyapunov-Schmidt, theory (see (4]).

In the st.,dy of degenerate Hopf bifurcations the hand calculation (as opposed to numerical
evaluation) of very long expressions is required, when the corresponding bifurcation formulae
are being used ((4], [6], [7], (15]). The purpose of this paper is not to carry out a direct symbolic
algebraic manipulation of bifurcation formulae. It is planned to develop a recursivc algorithm
well suited to symbolic computation implementation, which is based upon the normal form
approach and suppliWs the necessary information to characterize generalized Hopf bifurcations.

In section 2, the application of normal formi theory to the Hopf bifurcation is presented;
it is shown that the description of bifurcation phenomena is achieved friom the knowledge of
corresponding normal forms. Using MACSYMA, Rand et al. (12], [13], (14]) have introduced
computer algebra in bifurcation methods. For the case of Hopf bifurcation, they use the
normal form approach, but their procedure is not. optimized because they do not take full
advantage of transformation theory leading up to niormal forms.

In section 3, an efficient procedure to obtain the normal form corresponding to a Hopf
bifurcation is presented; it is based upon the use of Lie transforms as contained in [1], [11].
The calculations are arranged in a recursive scheme using complex variables and so the coin-

putational effort is optimized. Finally, in section 4, the devised algorithn is applied to several
examples by neans of a REDUCE program.

2. Normal forms and Hopf bifurcation

A widespread approach to characterize Hopf bifurcations consists in transforming the sys-
tem to the so-called normal form. For this, it may be necesary to previously compute its
center manifold which would lead to a reduced two-dimensional system. This task can be
accomplished in a efficient way by means of the algorithm described in an earlier paper [2].

So, consider the system

+= F(x, y, (t)

= G(x, Y, .)

with isolated equilibrium point at the origin whose jacobian matrix for this point has the
canonical form

A(p) WO[O~ a(/')3

where p is the bifurcation paranleter and F, G are smooth. For t = 0 it is verified
o%(0) = 0, w(0) = w0 > 0 and a'(0) 0 0. The appearance of bifurcating periodic orbits for
the system is named a Hopf bifurcation (10).

As it is outlined in the following, in view of the hypothesis a'(0) 3 0, to characterize this
bifurcation (number and stability of bifurcating periodic solutions) it is enough to consider
the system at it = 0

J. = -way + E Fa(x, y)

= W0a + EGMX Y) (2.2)

k>2

where formal expansions are assumed for F(.r, y, 0), G(.', y, 0) and Fk, Gk E V(k), the linear
space of all homogeneous polynomials in x, y of degree k.

It is possible to transform (2.2) by means of succesive near-identity transformations into
the nornal form (51, (61):

-Woy + "{a(V2 + y2)j.1 _ h1(.r2 + Y-2)jy}

= w0.r + Z ("l.i12 + Y2),Y + b1(.r,' + Y').}(2)
j>1

which is expressed in polar coordinates as

" = r~ aj),2j

>._ (2.4)
='o+ E.bj~

110

The parameterized system (2.1) can be brought to the following form

= a'(O) + r E ajr2 j

W > + bj?. (2.5)

j>1

For < < 1, the dominant term of the 0-equation is wo and so the bifurcating behavior is
determined by the r-equation. Thus a) are essential for the characterization of Hopf bifurcationQ[41, [7], [91).

Here follows a brief description about the obtention of normal form (2.1). It is assumed
that the normal form is already computed to the k - 1 step:

A(O) x= 2-(,y + l?2k', Y) +** (2.6)

where
k-1 (J2 k-i(:ry) = (,r2 +) aj
j=2 (i a (.

and R-2k E V(2k, 2), the linear space of 2-vector homogeneous polynomials of 2k-degree. If
the near identity transformation

(a) -= ' +PUk(.J), where P-2k E V(2k,2) (2.7)

is performed the following is obtained:

=A(O)(:) +J 2k-i(&,)+{R2k(,)-L 2kP 2k(,)1+ (2.8)

where the linear operator L2k : V(2k, 2) -* V(2k, 2) defined by

LP2k(-,)= DP2k(.)A(O) (&) - A(O)Pk(,)

has been introduced.
It turns out ([1], [5]) that L2k is injective and so it is possible to solve uniquely

L2kP2k = R2k (2.0)

and therefore to remove 2k-degree terms.
Dropping the tildes, the normal form obtained is

(0 =A()(") +Jk-l(Y)+ 2k+l(,,) q.... (2.10)

where R2k+1 E V(2k + 1, 2). Now, to complete the k-step, a new near-identity transformation

must be applied:

= P2k+(C, #), P2k+l E V(2k+1,2) (2.11)

Ill

transforming (2.10) into

(Y) = A(O)(i)+J 2 -(,)+{R2k+1(,) - L2k+lPk+l(P,))+"" (2.12)

The linear operator L2k+l is no longer injective. Let Vr(2k + 1,2) denote the range of
L2k.+1, and Vc(2k + 1, 2) its kernel; it then holds that:

a) V(2:1 + 1, 2) = V'(2k + 1,2) V'(2k + 1, 2)

denote+1,2 =Bpn 2 rang (a, + k+ -Y
! c) L'2k+l Vr(2k + 1, 2) = Vr(2k + 1, 2)

According to (2.13.a), one can decompose R2k+l = R~k+l + !? k+l (the superscripts

denote range anld kernel components respectively); also, it is possible to choose uniquely
P~k+l E Vr(2k + 1, 2) such that

L2k+lPLk+l = R' (2.14)

and so the (24 + 1)-degree terms of (2.12) becomes R.k+. Now, dropping the tildes, the
system (2.12) takes the form:

It shoidd be noticed that the normal form obtained is equivariant under arbitrary rota-
tions, - , is a consequence of the symmetry of linear part (-w0y,w0x)' with respect to the
rotatio,, oup. As it has been shown above, this normal form has a simple representation in
polar coordinates (see 2.4).

Summarizing, to compute ak, bk, one must:

(1) Calculate R2k in (2.6) which represents tie 2k-degree terms produced by previous
transformation on the original system;

(2) Solve the 4k-dimensional linear equation (2.9) so obtaining P2k;

(3) Calculate R2k+l in (2.10) taking into account the previous transformations and the
corresponding one to P2k;

(4) Decompose R.2k+1 according to (2.13.a);

(5) Solve the (4k + 2)-dimensional linear equation (2.14) to obtain P2k+I.

A direct translation of this computational scheme using MACSYMA can be found in [13].
The authors of this work perform (2) and (5) in real coordinates; as it will be seen below,
use of complex coordinates results in both a halving of dimension and a simpler structure
of matrix representation of linear operators L2k, L2k+1, making the projection involved in
(4) also easier. In the quoted work the calculations of R 2 :, R2k+l are performed by direct
substitution of previous transformations; moreover, no profit is made from the corresponding

112

computations in the previous steps. To sum up, it seems that proceeding in such a way the
computational effort is not being optimized.

In this paper an algorithm for Hopf bifurcation well suited to symbolic computation is
presented. The algorithm is organized according to an iterative scheme making good use of the
previous steps, thereby minimizing the number of operations and the memory requirements.

3. An efficient way to compute ak,bk

As it has been mentioned, to increase efficiency in the Hopf bifurcation computation, it is
natural to introduce complex variables ([7], [9]). But what is more relevant is the possibility
of using Lie transforms in the theory of normal forms ([1], [11j), which leads to a recursive
way of obtaining the transformed equations from original ones. With these ideas in mind, an
efficient procedure for symbolic computation of Hopf bifurcation normal forms can be derived.

Thus, making z = x + iy, = x - iy in (2.2), where the bars denote conjugation, one
obtains

= woiz + Zk(Z,Z)
k>2

- = -WO? + E Zk(Z, (31
k>2

where
Z-z- . z+Z z -Z k Z',) FL. 2i) +")tiGk(Z 2 2i) k > 2

and it will be taken later that Z,(z,) = woiz. Note that Zk E V(k), the linear space of
complex homogeneous polynomials in z, F of degree k.

Now, consider the near-identity transformation

t w + Z Uk(w, 7i1) (3.2)
k>2

where Ilk E))(k). Conjugation of (3.2) provides the transformation to be considered for T.
This change of variables yields:

ti = woiw, + 1 1Wk(,)/ k! (3.3)
k>1

where Wk E V(k + 1). It is clear that it suffices to work only with the equations and transfor-
mations involving the variables :, w, for the conjugation operation produces the corresponding
ones for -, iit.

The key observation is that W'k, can be obtained by recursive expressions as follows: For
k = 0,1,... ; 1 = 1,2,... , k, let the following be defined

, k! Zk.+

[= + 1) (3.4)
j=O

where Uj E V(j + 2) are related with the transformation (3.2). Also, the 0-product for a pair
(w, T) and U(w, 1l) has been introduced:

WCU= + + - -1 (3.5)

113

FRom this it is obv" us that WL, E V(k + 1) for all J. With these definitions it can be
proved that

Wk = Wo , k = 1,2,....(.6

It must be remarked that the computations in (3.4) can be accomplished by considering
the so-called Lie triangle (1], [111). The searched-for elements Vk appear on the diagonal of
the Lie triangle:

W10 T'V01

TV0 W11 1Y2

T 3
0 W42 W12 J'V0

where each element can be calculated by using the entries in the column one step to the left
and up.

In ordler to sinmplify Wk. -so putting (3.3) in normal form- an appropriate Choice Of Uk
must be made. It is easy to verify -see (2.8), (2.10)- that

Wk = Tok = R. -4kUk-1, k 1 (3.7)

where 4U = -Wo (U, U E V(k + 1). 4 : V(k + 1) -* V(k + 1) is a linear operator andlRk E V(k + 1), which depends on the Uj, 0 j _< k - 2 and so, if these are known, then Rlk

is known.
Since 4 results nonsingular for k odd, it is possible to choose Uk-x E V(k + 1) such that

Wk vanishes in these cases (cf. 2.9).
If k is even, the linear operator 4 is singular. Let VW(k+1) denote its range and VC(k+1)

its kernel. It then it holds (see 2.13) that:

a) V(k + 1) = r(k + 1) B ')c(k + 1)

b) V (k + 1) = span{(t,iV)k/2 w} (3.8)

C) £k(V'(k + 1)) = Vr(A • + 1)

According to (3.8) it is possible now to choose uniquely Uk_1 E V (k + 1) such that
k e C(k + 1). In other words, if this is done likewise for k = 2m, then ='V(w,i)

d,,(l)'w, in > 1, dm E (. Therefore, it has been shown that (3.3) adopts the following
normal form:

ti= woiw + (2 m)(Uu) (3.9)

Comparing (3.9) with the real normal form (2.3), it is concluded that

(!= a. + ib,, in > 1 (3.10)

Using this computing process, several improvements are achieved. On the one han[the
dimension of the equations to be solved is halved and the corresponding operators take a di-agonal form. On the other, only the operations needed are performed, lowering the possibility

114

of exhausting the computing facilities with unnecessary terms that must later be truncated
[13).

4. Programing aspects and computational results

To carry out the above algorithm on a computer algebra system several observations are
in order. It is possible to implement the algorithm by selecting the appropriate primitives
of the computer algebra system, merely reproducing the mentioned steps. However, it is
more efficient and less expensive to use a vectorial representation of the polynomial functions
involved.

So, for each k > 1, a lexicographic ordered basis in V(k + 1) can be used. Let Pk+l be
the ordered set of 2-indices with module k + 1. Then

k+= {(F) : p E Pk+ I

is a basis of V(k + 1), where (z,F)P = zWPP2, for p = (p,,p2) E "PL+G .
To determine the matrix representation of Lk over t3k+ observe that:

4k{(z,) } = -(woiz) 0 (:Z,')P = (PI - P2 - 1)W0i(z,-F)" (4.1)

and so k can be identified with a diagonal matrix

CL = woi" diag{-k - 2,-k, -k + 2,..., k - 2, k} (4.2)

In order to compute the vectorial representations in 81.+, of the Lie triangle entries, the
0-operation must be considered (see 3.4). From (3.5) it is easily verified that the 0-operation
is additive (but non-honmogeneous) and therefore it suffices to analize it for monomials. If
a,[E (V andp= (pi,p2) E Pt, q = (ql,q 2) E ?t2 Withl 11,12 > 2 then:

{a(zO) 0 19(Z, 7Y) =ct/3(p 1 ql) Z +~i-® =a/q(- Z)2
+ 012 Z1'

p
"
q2 t'2+q-1 (4.3)

- "q 2 zP2+9I 7px+q2-1

Thus, the computation of succesive rows in the Lie triangle is a straightforward task. For
each k, to obtain lk it is a practical approach to segregate it from Wk in (3.7). That can be
accoml)lished by neglecting the term W° 0 UkL- in W,_tk, thereby eliminating this term in
the corresponding row of the Lie triangle. Once 1k is obtained, tile row must be corrected
appropiately.

For k odd, the matrix representation of 4 permits a direct computation of Uk.-I such
that CUk- = Rk and so Wk vanishes. For k = 2m, there is one diagonal element equal to
zero in the matrix (4.2), and now [14- can be selected.in such a way that 4 1U-1 = T k,
where the superscript r denotes tile projection of lZk over the range of 4. As it can be seen,
this projection is an elementary task. Therefore l'Fk = 7.., which is spanned by the element
W"'+'lTi ' , and the corresponding coordinate is the d,,. searched for.

With these ideas, a first implementation of the algorithm described in the previous section
has been obtained oil REDUCE [8]. A vectorial representation of both polynomials and
operators has been used. Some previously known examples have been solved to test the
lrogram and denmnstrate its performance. A selection of tile results achieved is presented in
the following.

'Is

Example 1: Computing formulas for a,,b,

Consider the general system

= -woy + f(, y)(4.4)

= ,or + g(x, y)

with f(0,0) = g(0,0) = 0, Df(O,0) = Dg(0,0) = (0,0). After 61 seconds of 1NAX-II time,
the well-known formulas ([5], [15]) for a1 , b, are obtained:

al = (wogYYY + wof 5YY + W09ogxy + Wofrxx + fYY+YY + fyyfxsy

- 9YYg + Lyfx, - gxsgxz - f g,0.)/(10Wo)

b= (-3wofyyy + 3wogxyy - 3wofxxy + 3woyx, x - 5fyy + fyygx - 5f11,fxx - 2 YY

5gyyfxy - 5gyygxx - 2fx + fxgxx - 2gY2 + 5g,:yfx -. f2. - 5g2.)/(4So)

Example 2: Computing formulas for a,, bl, a2, b2 in presence of a symmetry

Consider the system (4.4) with the following additional properties:

f(-r, -Y) -f(x, y), g(-x, -Y) = -g(x, y)

After 794 seconds of pLVAX-II time, the procedure derives the general formulas for
a,, b, a2, b2 in this case:

al = (gy + fxyy + Ug.x + fxxx)/16
bi = (-fvy + gxyy - fr + g 1x)/16

a2 :. (wogyyyyy + woryy + 2wogzxxyy + 2wf y + wogxrxjry + UwOf-.-~ + fYjyg9yy

+ fyfxyy - fYVg, - fyyfxx: - gYgYrxy - gyf~xx + gyy gxxz

+ 3fyg:yy + 3fxyfzx + fxygrxx - 3gx:yyxxy + gryyfxxr - 3frxgxxy

+ f rxyfirx - gxyxr- frrrgrxrx)/(384wO)
b2= (-&-oofyyy + 8wogzyyyy - 16wofrxyyy + 16ogxxyy - S)ofzxzry + 8W09xxxr

f17f - 22f g - - - + 3 8gyyyfr-g

.. 2 6gyyygtx + 14gyfx - 33- x + 30fxyyg 1r - 26fxyyfrx 9 g2 + 18gxfxxy

lOgryygx - 9fx, - 22fxrygrxx - 33g + 38grry.f.r - 9.f1:. 17gx)/(3072wo)

These formulas are interesting in the study of degenerate Hopf bifurcations in dynmical
systems with the symmetry expressed, as it will be shown in a later example.

Example 3: Van der Pol's equation

This classical example has been studied by Hassard et al. [6], who performed a calculation

by hand of the corresponding al, bl, a12 , b2 , using formulae previously derived in [6], [7]. In
order to contrast their results, the algorithm is applied to the equation:

-Y = + ar
'

116

obtaining (after 12 cpu-minutes approximately):
3 2

a, =3 , b,=0, a,2 0, b2 =- 2a
250

Observe that the system has the symmetry described in example 2 and is in full accordance
with the results obtained in [0].

Example 4: Al autonomous electronic oscillator

This example arises from the study of an electronic circuit partially analyzed in [2], [3].
The corresponding state equation is a three-dimensional autonomous system (see [3]). After
a center manifold reduction performed by the symbolic algorithm devised in [2), the two-
dimensional reduced system takes the following form:

= -Woy + L L X3 + 2:(3ax5 + 3,'r 4y + 37dt. 3y 2 + 36x 2 y3)
1. 1'

= wo + + ,1C2 (3aa.5 + 3/&a, 4y + 37a.3V2 + 36x2 Y3)
7. r

where r, y are related with the state variables corresponding to voltages and currents in the
circuit and wo, r,i1, K, C2, a, f, 7, 6, are parameters related with its physical configuration.
By using the program written in REDUCE, the following coefficients for the normal form are
obtained in about 12 cpu-minutes:

a, = (3,qKl)l(8r)
a2 = (311(2rwK 17 + 10rwKla + 2rwK 2 6 + 2rwK 23 - K1AK 2))/(32r 2 W)

b= (3,IK2)/(8r)
b= (31(-16rwK,6 - 16,'wKIfJ + 16rw, 2-t + 80rw '2a - O,1K2 - 17,11K))/(256,2w)

It is noted that this system possesses the symmetry considered in example 2 and the
normal form obtained permits a convenient characterization of the underlying degenerate
Hopf bifurcation.

5. Concluding remark

In our opinion this algoritm is a good exponent of the way computer algebra must be guided
to a effective long calculation. We have tested the algoritm with different examples, some of
them already solved by other means and it has overcame several computational difficulties in
previous approaches. The REDUCE 3.2 program used is available on request to authors.

Acknowledgements

This investigation was supported by the Spanish Ministry for Education and Science (MEC)
in the frame of CAICYT Project 1102/84.C.3.

Bibliography

[1] S. Chow and J. K. Hale: Methods of Bifurcation Theory. Springer, New York (1982).

117

(2] E. Freire, E. Gamero, E. Ponce and L.G. Franquelo: An Algorithm for Symbolic Com-
putation of Center Manifolds. In Proceedings ISSAC '88, Lecture Notes in Comptuter
Science, Springer-Verlag, New York, to appear.

(3] E. Freire, L.G. Franquelo and 3. Aracil: Periodicity and Chaos in an Autonomous Elec-
tronic System, IEEE Transactions on CAS, vol 31, pp 237-247 (1984).

(4] M. Golubitsky and W.F. Langford: Classification and Unfoldings of Degenerate Hopf
Bifurcations, J. Diff. Eqns. 41, 375-415 (1981).

[5] J. Guckenheimer and P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifar-
cations of Vector Fields, Appl. Math. Set. 42, Springer-Verlag, New York (1986).

[6] B.D. Hassard, N.D. Kazarinoff and Y.-H. Wang: Theory and Applications of the Hopf
Bifurcation, Cambridge University Press, Cpmbridge (1980).

17] B.D. Hassard and Y.-H. Wang: Bifurcation formdae derived from center manifold theory,
J. Math. Anal. Appl. 63, 297-312 (1978).

[8] A.C. Hearn (ed.): REDUCE 3.2, The Rand Corporation, Santa Monica (1985).
(9] I.D. Hsii and N.D. Kazarinoff: An Applicable Hopf Bifurcation Formula and Instability

of Small Periodic Solutions of the Field-Noyes Model, J. Math. Anal. Appl. 55, 61-89
(1976).

110] J.E. Marsden and M. McCracken: The Hopf Bifurcation and its Applications, Springer-
Verlag, New York (1976).

(11] K. R. Meyer and D. S. Schmidt: Entrainment Domains, Funkcialaj Ekvacioj 20, 171-192
(1977).

[12] R. H. Rand: Derivation of the Hopf Bifurcation Formula using Lindstedt's Perturbation
Method and MACSYMA, in Applicationq of Computer Algebra, R. Pavelle (ed.), Kluwer
Academic Publishers, Boston (1985).

[13] R. H. Rand and D. Armbruster: Perturbation Method. Bifurcation Theory, and Computer
Algebra, App!. Math. Sci. 65, Springer-Verlag, New York (1987).

(14] R. H. Rand and W. L. Keith: Normal Form and Center Manifold Calculations on MAC-
SYMA, in Applications of Computer Algebra, R. Pavelle (ed.), Kluwer Academic Pub-
lishers, Boston (1985).

[15] F. Takens: Unfoldings of certain Singularities of Vector Fields: Generalized Hopf Bifutr.
cations, J. Diff. Eqns. 14, 476-493 (1973).

Escutela Superior Ingenieros Industriales. Avda. Reins Mercedes. 41012-Sevilla. Spain.

118

Application of the REDUCE Computer Algebra System
to Stability Analysis of Difference Schemes

Victor G. Ganzha *
Institute of Theoretical and Applied Mechanics
Institutskaya 411, 630090 Novosibirsk, USSR

Institutf. Informatik, Techn. Univ. Mfinchen, Fed. Rep. Germany

Richard Liska
Faculty of Nuclear Science and Physical Engineering,

Technical University of Prague, Brehova 7,
115 19 Praha 1, Czechoslovakia

Abstract
The stability regions of difference schemes approximating systems of linear partial differential

equations are automatically obtained by using the Computer algebra system REDUCE and numerical
methods for polynomial roots location. The stability analysis is performed by the Fourier method
and polynomial root location is based on the Routh algorithm. Several practical examples show the
usefulness of the programs described.

Introduction
Many of the tasks from mathematical physics solved by numerical methods need to determine the
stability conditions of the difference schemes used [1-3]. As the number of utilised difference
schemes is very large, it is necessary to efficiently find the stability conditions of these schemes.
Using computer algebra together with numerical methods allows to efficiently obtain practical stabil-
ity criteria of the investigated difference schemes. At present a number of works [4-5] dealing with
these methods of symbolic-numeric interface for the investigation of the stability of difference
schemes already exists. Most of these works use the well known Fourier method of stability analysis
with von Neumann stability conditions [1-3].

The second method suitable for automation by using computer algebra systems is the method
based on obtaining a differential equation which is called the modified equation [15] or the
differential approximation [14] of the difference scheme and which is derived from the difference
scheme by substituting the Taylor expansion of discrete values into the difference scheme and elim-
inating the time derivatives from the differential equation obtained. From properties of this
differential approximation stability condition are derived. This method can be used heuristically also
for non-linear difference schemes [6,16] and in this case has the advantage over other methods in the
fact that it takes into account also gradients of functions which are computed.

The analytical-numerical technique for the stability studies realized in ref. [4] has been based on
a numerical solution of the dispersion equation with complex coefficients

• Supported by the Alexander-von-Hlumboldt.Stiftung

where = 0f (X)= aj X n -_j ,

j=1

X = e- , (o is the frequency in the Fourier harmonic, aj are complex coefficients, ao * 0, n > 1. In
particular, at n = 3 the equation f (X) = 0 has been solved in ref. [5] by using Cardano's formulae. In
ref. [8] a system IBSTAB has been presented for an automatic stability analysis of difference
schemes approximating the initial- and boundary-value problem for hyperbolic systems depending
on t and on one spatial variable x. The IBSTAB system combines symbolic manipulations in the
LISP language and digital FORTRAN computations, with it the equation f (X) =0 for n = 3 and 4
was solved numerically; in particular at n = 3 Cardano's formulae were used as in the methods of
ref. [5].

In [5] the symbolic-numeric interface for investigating the stability of difference schemes
approximating systems of partial differential equations with constant coefficients is described. The
automation of the stability analysis algorithms is based on the Fourier method, the Lienard-Chipard
criterion and methods of optimization theory and allows to determine the boundaries of a stability
region with sufficiently high precision. In this interface, the languages REFAL [20] and FORTRAN
are used.

We present here the symbolic-numeric interface for stability analysis of difference schemes
based on the Fourier method and Routh algorithm for determining if all roots X of a polynomial fall
into the ReX < 0 halfplane. This interface is divided in three steps. In the first step the amplification
matrix of a difference scheme and its characteristic polynomial are computed.

In the second step the characteristic polynomial is transformed by conformal mapping to
another polynomial to which the numerical method of locating its roots in order to test stability con-
ditions can be applied. On the base of this transformed polynomial a numerical FORTRAN program
is generated which performes the third step by investigating the region of the roots of the polyno-
mial. The numerical program determines for which parameters of the given scheme the stability con-
ditions hold.

Note, that when using the Routh method we do not need to analytically or numerically calculate
the principal minors of the Hurwitz matrix, as was done for example in [5,7,17]. Symbolic deter-
minant calculation is nearly always, except for quite small or sparse matrices, a very time and
storage consuming task. Our experience shows that using the Routh method for determining stability
regions is more effective from the symbolic-numeric computation point of view than using the
Routh-Hurwihz or Lienard-Chipard methods. However we have to mention that the Routh-Hurwitz
and Lienard-Chipard criterion directly give analytical conditions of stability which can be used for
stability testing. These analytical algorithms for polynomial roots locating were implemented in
REFAL [20] and in REDUCE by the second author but are not subject of this paper.

The description of the numerical methodology is basel on the work [16]. Now we briefly
describe the theories used in the three steps of the symbolic-numeric interface.

120

1. Fourier Stability Analysis of Difference Schemes

One of the most commonly used methods for investigating the stability of difference schemes is the
Fourier method of stability analysis [3]. This method offers the possibility of automation of the alge-
bra it needs by computer algebra systems. The Fourier method can be used for stability analysis of
any linear, two-level (in time) difference scheme approximating a system of linear partial differential
equations.

Let the difference scheme
E B In+i + B: = 0 (1)

jeNi je1N2

i UIJ 2 . ,.... iI 4)

I!= it 0o+n At x 10+ IAX 1, x 2 +j2 AX2 , Xdo+jd AXd)

be a two-level system of nm difference equations in d spatial coordinates (xl,x2, .. Xd). To per-
form the Fourier stability analysis of this difference scheme we substitute

u" I=uaexp(ikxj), u;+ = exp(ikxj)

Xi = (X1O+j 1AX ,X2 0 + j 2 A 2 XdO + jdAXd) (2)

k = (k ,k2,...,-kd)

into the scheme (1). k is the wave vector of real wave numbers kt . After dividing the equation by

exp (ik'xo)=exp (i (klxlo +kx 20 + kdXdO))

we obtain
Hiai + H0A° = 0, (3)

where matrices Ht are given by

HI= B/exp(i(klJAxl+k2j2dx 2 +....+kdjdtxd)), 1=0,1. (4)

Equation (3) can be written as
tO1=Gii0 , G=-H"Ho. (5)

Matrix G(kAt,Ax) is the amplification matrix of the difference scheme (1). The von Neumann
necessary conditions for stability of the difference scheme (1) is

I - Il< +O(,r), i=l,2,...,p, forallkeR , (6)

where X X1 X' are the eigenvalues of the amplification matrix G, i.e. they are roots of characteristic
polynomial f (%) of the amplification matrix G

f (X) =det (XE-G)
f (Xi) =0, i=l,2,...,p, (7)

where E is the unit matrix. If we do not consider the exponential growth in time of the solution a1,
we can write the necessary stability condition as

I X(k)I 1+O(c), i=l,2,...,p forallkeRd, (8)
which is the basic stability condition used in this paper.

121

__ _ __ _

2. Conformal mapping

This section treats the conformal mapping between the unit disk and the left halfplane of the com-
plex plane. This mapping is necessary for treating von Neumann stability conditions as Routh-
Hurwitz problem.

Let us prove the following assertion: if X = I is a root of multiplicity k of the polynomial equa-
tion f (X) = 0 and n is the degree of f (X), 1- k n , then the polynomial

g (z) = (z -)f ((z +l)(z -1)) (9)
has degree n-k. Indeed, since X is a root of multiplicity k of the equation f (X) = 0, the polynomial
f (k) may be represented in the form

f (X) = (X- l)kf (X) (10)
wheref 1(%) is a polynomial of degree n 1 = n-k,

ft(,) .7,n - k - .
(1

j=o

If k = n, this means that all roots of the polynomial f (X) are equal to unity. Consider now the case
when k <n. Let X1, ..., Xp, be the roots of the polynomial f j(%) determined by formula (11) where
15p05n , and let zj, (j=l,...p 1,1.5p 1 n 1) be the roots of the polynomial

g (z) = (z -)nf (1 (2
Z-1

It is well known (see, for example, ref. [14]) that all the roots of the polynomial f 1(X) lie in the unit
disk in the plane of complex variable if and only if all the roots zj of the polynomial (12) satisfy the(z+l)
condition Re (zj)<0. Thus, with the aid of the conformal mapping X = (Z +1) the original problem
of determining whether all the roots of the polynomial (11) belong to a unit disk reduces to the
Routh-Hurwitz problem [9] for the polynomial g (z) defined by formula (12).

3. Numerical locating of polynomial roots by the Routh method

3.1 Routh method

By the conformal mapping described in the previous section the characteristic polynomial f (X) (7)
of the amplification matrix G (5) is transformed into the polynomial g (z) (12). The polynomial
g(z) is called stable if and only if for all roots zj of the equation g (z)--O, Re(zj)<O. The Routh-
Hurwitz problem is the task to determine if a given polynomial is stable or not. So to decide if the
stability conditions (8) hold we have to solve the Routh-Horwitz problem for the polynomial (12).
This methodology can also be used for determining the set of difference scheme parameters for
which the difference scheme can be stable and namely the boundary of this set.

For solving of the Routh-Hurwitz problem we have chosen the Routh method. The reasons for
this choice are discussed in the introduction. To apply the Routh theory [9,10] to the polynomial
(12) it is necessary for the coefficient do in g (z) to be positive. Let

i(z)' "r z - , dv =d, sign (do), v--O,..... n 1 (13)

V=o

122

According to [10] the Routh table 41) 41t) d20) ...
j(2) jJ2) ...
... (14)

for the polynomial g(z) (13) is built. This table is constructed by the following rules:

1. In the first row of the table (14) are written the even coefficients of the polynomial (13), i.e.dol = p., d t = j._ ..

2. In the second row of the table (14) are written the odd coefficients of the polynomial g(z), i.e.
4o2) = j. _I, df2) = d" 1-39....

3. Elements of the k-th row for k 3 are computed from the two previous rows according to the
formula

_~) 0 d-)di=+.12 -- , il) (15)

4. Building of the table (14) stops on the p-th row if the number J4i+1) is equal to zero.

If during tie building of the Routh scheme (14) in the sequence do), do('), jo(4), ... the
number jk) = 0 is obtained and all elements of the row containing j(k) are equal to zero, then this
row has to be replaced by the row

(n 1-m+l) do~k-), (n 1-m-1) d -),(n t-m-1)d t -)..

where d(k-1), jfk-1), j(k-1),... are the elements of the previous row and m is the number of rows
already obtained. After this replacement the building of the Routh table continues.

The Routh theorem [13] states the relationship between the stability of a polynomial and its
Routh table: The polynomial Gd(z) (13) of degree n1 with real coefficients and positive mean
coefficient do is stable if and only if the construction of the Routh table (14) does not stop until the
(n 1+1)-th row and all elements of the first column of this table are positive.

3.2 Numerical Realization of the Method

Usually, it is possible to write a difference scheme approximating the system of partial differential
equations in the form in which the coefficients of the difference equation depend on certain dimen-
sionless complexes (for example, the Courant number, the Reynolds number, etc.), on dimensionless
weight coefficients and on some other dimensionless parameters (for example on the ratio of gas
specific heats y) which may enter the difference scheme. Let us denote all these dimensionless quan-
tities by lCj,...,cd, d l. Substituting the right-hand side of (2) into the difference scheme we obtain
certain formulas which now contain alongside with Kl,..., d the quantities klhl...,kNhN where
h ,...,hN are the step sizes of a uniform computational grid along the axes Xl,...,xN, respectively.
Thus, the coefficients aj in (2) prove to be dependent on the quantities Kl,..., d and on the spectral
coordinates 41'.... N where 41 =ktht, l=1,...,N. Usually, the coefficients ay prove to be periodic
functions of the variables 4,..... 'N with periods T l,...,TN, respectively. Let us consider in the N-
dimensional Euclidean space (a parallelepiped G: (0_j:-j, j=I,...,N}. Let us construct

123

in the domain G a rectangular uniform grid having Jt nodes along the coordinate t,1=1,...,N.
Denote by Rd the d-dimensional Euclidean space of points (Kl,..... d). Let the functions
i = it(t)'"',cd = id(t) determine parametrically a certain smooth curve in Rd which intersects the
boundary of the stability domain of a difference scheme under consideration. Let us introduce by
analogy with ref. [7] the function

JR Jtv N

F(t)= F S(jlj #Nj,,l(), "",lcd(t))-nlfJl +0.5, (16)
JI=l JN1= k=l

where
, k

S() = K(, ,(t).... d(t)) + Esign di (17)
1=1

In the formula (17) K () is the multiplicity of the root X = 1 of the equation f (X)= 0 at the point
under consideration P(1I,...,NN'i,.... d), (l ',4N.jN) are coordinates of the grid node in the
domain G of the space of spectral coordinates (Denote by Ds the domain in the Rd space
at the points of which the roots of the polynomial f (X) determirned by (7) satisfy the inequalities
IXi I <l,j=1,...,p, at arbitrary values of the spectral variables 41. It is obvious that if P e Ds then
F(t) = 0.5; if PdDs, then F(t) -0.5. Consequently, the function F(t) changes its sign and, in addi-
tion, has a jump at the boundary rs of the domain Ds. Taking into account this behaviour of the
function F(t) we have realized the following two-stage algorithm for the calculation of the value t
determining that the c6rresponding point (1c cd) belongs to the boundary l s . Thefirst stage con-
sists of determining the interval [tnl,tma] at the ends of which the function F (t) has opposite signs.
To reduce the number of computation of the function F at tl-is stage the value of t is used that was
obtained at the neighbouring point of the boundary I s . If the above interval is not found by the pro-
gram along the given line i1c = l(t), ..., d = Kd (t), then the program prints out a message that along
the line under consideration the scheme is stable or instable depending on whether the function
(16),(17) is everywhere in the interval [tmin,tma] positive or negative, respectively. At the second
stage the bisection process is applied in the interval [tmin,tma,]. This process is terminated as soon
as the length bk-ak of an interval [ak,bk] c [tmi,,tmau] obtained at the k th bisection step becomes
less than a given value S. The quantities d1 are obtained from the Routh scheme (14).

4. Description of the programs

4.1 Algebraic programs in the REDUCE computer algebra system
All analytical calculations needed in the stability analysis are performed in the REDUCE computer
algebra system [18]. Several new statements and operators for this purpose are introduced into the
system. Most of the REDUCE programs are written in the symbolic mode of the system, i.e. on the
LISP language level and are designed to be easy to use, even for users not familiar with REDUCE.
We describe a few new statements and operators.

The statement COORDINATES has the syntax

COORDINATES <coordinates> INTO <indices>;
<coordinates>: :=<coordinate>I<coordinate>,<coordinates>
<coordinate>: : =identifier - the name of the coordinate
<indices>: :=<index>I<index>, <indices>
<index>::= identifier

124

i.
-.I

and denotes the indices which will correspond to the coordinates in difference schemes. The name of
the time coordinate is supposed to be T. As an example statement,

COORDINATES TX INTO N,J;

means that N is the time index, and J is the index of the spatial coordinate X.

The statement UNFUNC declares the names of variables used in the difference scheme. Its
syntax is

UNFUNC <variables>;
<variables>: :=<variable> I <variable>, <variables>
<variable> ::=identifier - the nameof the variable

The identifiers used as variables should be declared as operators by the OPERATOR statement and
are used in difference schemes as operator with one or more arguments to denote discrete values of
functions. Each their argument is an expression built up from one index and integers. If some index
is omitted in variable operator arguments, the variable is supposed to be in the point given only by
this index. After declaring the variable names

UNFUNC U,V; .-n+l .- n +Il

we can use (U (N+l, J) -U (14+l, J-1)) /HX to denote the expression Ax ,orAx

(U (N+I) -U (N)) /HT to denote . As only two-level difference schemes are allowed, the

time index, here N, can appear in arguments of variable operators only as N or N+I. Difference
schemes (1) have to be entered into the system in the described manner as elements of a matrix with
dimensions (l,m), where m is the number of difference equations in the given scheme.

The operator CHARPOL computes the characteristic polynomial of a given square matrix. The
variable X of the characteristic polynomial (7) is denoted by the identifier LAM. The operator takes
one argument - a square matrix - and its value is the polynomial in LAM.

The operator HURW transforms the polynomial in LAM, which is its argument, by conformal
mapping (9) to another polynomial again in LAM (z from (9) is also denoted by LAM). This pro-
cedure is used to transform the investigated region of polynomial roots from the unit disk to the left
halfplane where the Routh method of polynomial roots locating works.

The work of all the statements and operators described here can best be seen in the heavily
commented example from the next section which was chosen especially for th, purpose of demon-
strafing how to use the presented programs. The programs are obtainable from the authors on
request. Programs for using this method for more than two-level and non-linear (linearization is
necessary before stability analysis) difference schemes are in preparation.

4.2 Numerical FORTRAN program for the Routh algorithm

Now we briefly describe the FORTRAN programs that implement the above numerical algorithms
for the examination of the stability of difference schemes. FORTRAN programs can be generated in
the REDUCE system using the flag ON FORT and the WRITE command. We show the structure
of a REDUCE program that generates the FORTRAN program RAUS and describe some input
parameters.

125

ON FORT

OUT ofile.for

WRITE " SUBROUTINE RAUS";

WRITE " READ 1,NY,NI";
WRITE " READ 1,NH1,NH2,...";

WRITE " READ 2,DX,EX";

WRITE " CALL BISEC(EX,K1,NF)";

WRITE " END";IWRITE " SUBROUTINE BISEC(EX,X,NF) ";

WRITE " X.(A+B)/2";
WRITE " Y-F M ";

WRITE " END";

WRITE " FUNCTION F(X)";

WRITE " CALL KOEFF(AX,NY1)";

WRITE " CALL POLDIV(NYI,AW,2,BWCWK) ";

WRITE " FSUM+SUMO";

WRITE " END";

WRITE " SUBROUTINE KOEFF(CCXN);

for i:-l:NC+l do WRITE A(i):-CC(i-1);

WRITE " END";

WRITE " SUBROUTINE POLDIV(D1,C1,C2,C3,D3)";

WRITE " END";

OFF SHUT
END

The result is a FORTRAN source text in file ofile. for. The program RAUS consists of four
subroutines and one function subprogram. In the main program some variables are read that deter-
mine the operation of the program. The variable NY contains the degree of the characteristic poly-
nomial f (k) = 0, NI contains the number of nodes in direction of each of the spectral coordinates 41

,1=1,...,N. In the variables NHi=,...,M, the number of nodes in each direction Ki=1,....M are
stored. The stepsize is DX. If NHI is 1 for some i (e.g. i=3) then the corresponding polynomial

depends on i1c and Kc2 only. The unknown parameter ic1 is determined by a process "dichotomie".

This algorithm is implemented in a program BISEC. The maximal error of this iteration is EX.
The function subprogram F (x) calculates the function F(t) by the above formulae (16-17) and the

algorithm RAUS that has been described above. The subroutine KOEFF calculates the coefficients
of the characteristic polynomial F(X) that has been obtained in analytic form from the REDUCE pro-
gram. It is possible that F(X) has a zero at X = 1. Then the factor (X - 1) must be cancelled using the

subroutine POLDIV.

The result is shown graphically or as a table of the unknowns K1, ..., IC,.

126

____I

5. Example

An example demonstrates the practical usefulness of the presented interface. Input to the REDUCE
system is denoted by " (I) " and output of the system by" (0) ".

As an example we choose the stability analysis of the explicit difference scheme for acoustic equa-
tions [6,10]:

n+l.-Ul
*m~k "- U ln k C U -"_.k + 2 U Iln k--Ull k

2 h.

u2. u2,n.1,k U 1 n-2u n+u
pU3m~~-u3 U~fft~l~k uln1 'kl .k1 + u 3 ,k --30._u3 1

+]=0h . h y h y

In is exampl we en hr fo - 2u2n,k + U 2n+l,k etermiingstbility-e
soL e w a0, (18)Ic h. h.

u3I1) OAO U1,U2,U3;

- -~ ~ . + u 3 r k l " 0Jndc'at MA~ + C ulnk+l--Ulnk-1 u U3",k-1 2 u3mk "'+1
2c hy hy 10

In this example we present here for demonstration the whole process of determining stability regions,
so wie proceed with a commented REDUCE dialogue: declaration of coordinates, grids and variables.

(i) COORDINATES T,X,Y INTO N,M,K;
(I) GRID UNIFORM, T,X, Y;
(I) UNFUNC U1,U2,WU;
(I) OPERATOR U1,U2,U3;

definition of the scheme (30); HT, HX, HY are grid steps in coordinates T, X, Y
(I) MATRIX AA(1,3),BB(3,3);
(I) AA(1,i) :.(UI(N+1)-Ul(N))/HT+C/2*((-UI(M-1)+2*UI(M)-UI(M+i))/HX +

(U2(M+I)-U2(M-l))/HX - (U1(K-) -2*U1(K)+U1(K+I))/HY +
(U3 (K+i) -U3 (K-i)) 'HY) $

(I) AA(I,2) :(U2(N+I) -U2(N))/HT+C/2*((UI(M+I)-UI(M-1))/HX -
(U2 (M-1) -2*U2 (M) +U2 (M+))/HX) $

(I) AA(I,3):=(U3(N+i)-U3(N))/HT+C/2*((UI(K+I)-UI(K-l))/HY -
(U3 (K-i) -2*U3 (K) +U3 (K+I))/HY) $

We do not want to print the matrices H0, H1 (4):
(I) OFF PRFORMAT;

calculation of amplification matrix of the difference scheme:
(I) BB:-AMPMAT AA;

KX, KY are wave numbers in coordinates X, Y
(0) AX:-KX*HX
(0) AY:"KY*HY
(0) BB(I, 1):(COS(AX)*HT*HY*C + COS(AY)*HT*HX*C -

HT*HX*C - HT*HY*C + HX*HY)/(HX*HY)
BB(1,2) :=(-SIN (AX) *HT*C*X)/HX
BB (1, 3) :- (-SIN (AY) *HT*C*I) lHY
BB (2, 1) : - (-SIN (AX) *HT*C*I) /IX
BB (2,2) := (COS (AX) *HT*C-HT*C+HX) IHX
BB(2,3) :=O
BB(3,1) :=(-SIN(AY) *HT*C*I) IHY
BB(3,2) :-0
EB (3,3) :- (COS (AY) *HT*C-HT*C+HY) IY
calculation of the characteristic polynomial of the amplification matrix:

(I) POL:-CHARPOL BB$
several substitutions useful in this example;

CAP1, CAP2 are introduced dimensionless quantities
(I) LET

COS AX-COS AX2**2-SIN AX2**2,
COS AY-COS AY2**2-SIN AY2**2,

127

SIN AX-2*SIN AX2*COS AX2,
SIN AY-2*SIN AY2*COS AY21
COS AX2*2-1-SIN AX2**2,
COS AY2*2-1-SIN AY2**2,
SIN AX2-S1,
SIN AY2-S2,
HX-C*HT/CAP1,
HY-C*HT/CAP2;

statements for fonmatting output of algebraic expressions
(I) FACTOR LAM;
(I) ORDER C,R,S1,S2;
MI POL:-POL;
(0) POL:-LAM* *3+LAM**2* (4 *S1**2*CAPI+4 *s2**2*CP2-3) +LA4* (12 *S **2*

S2**2*CAP1*CAP2+4*Sl**2*CAP1**2-O*S1**2*CAPI+4*52**2*CAP2**2
-8*S2**2*CAP2+3) +8*S1**2*S2**2*CAPI**2*CAP2+8*Sl**2*S2**2*

CAPI *CPp2 **2-12*S1 **2*S2**2*CAPIp*CAP2-4*S **2 *CAPIp**24
4 *Sl**2,kCAP..4 *5 **2*CP2* *2+4 *S2 **2*CA2-

cancelling of the substitutions
MI CLEAR COS AX,COS AY,SIN AY,COS AX2**2,COS AY2**2,

SIN AX2,SIN AY2,HX,HY;
testing on the root I.Am=1 and eventually transforming complex polynomial to the real one

(I) POL:-COMPLEXPOL POL$
(0) If 8*Sl**2*S2**2*CAP1*CAP2*(CAP1+CAP2) - 0,

a root of the polynomial could be equal to 1
definition of the beginning letters of newly created identifiers during denotation

MI DENOTID CP;
denotation of the coefficients of the polynomial in LAM (not necessary here,
but present for t purpose of demonstration)

(I) POL:-DENOTERPOL POW;
(0) POL:-LAM**3*CPRO3+LAH**2*CPRO2+LAM*CPROI+CPROO

performing of the conformal mapping (9)
(I) POL:-HURW POL;
(0) P0L:-LAM**3* (CPROO+CPROI+CPRO2+CPRO3) +

LAM**2*(-3*CPROO-CPROI+CPRO2+ 3*CPRO3) +
LAM* (3*CPROO-CPRO1-CpRO2+3*CPR03) -

CPROO+CPRO1-CPRO2+CPPO3
calculation of the coefficients of the polynomial in LAM

MI ARRAY CC(l0),A(10),
(I) NC:-COEFF(POL,LAM,CC);
(0) NC:=3

generation of a part Of a FORTRAN numerical program
MI ON FORT;
(I) OFF ECHO;
MI OUT ofile;

writing the values of identifiers created during denotation:
MI PRDENOT T;

writing the coefficients of the resulted polynomial:
(I) FOR I:-l:NC+. Do WRITE A(I):-CC(I-1);

The last two statements generate in the file o file the following FORTRAN program:

CPROO-8. *Sl**2*S2**2*CA.P1**2*CA.P2+8.*Sl**2*S2**2*CA.PI
*CAP2**2.12.*S*2S*2C *AP-.S*2CP*2
*4.*****CAPl-4.*S2**2*CA.P2**2+4 *S2**2*CAP2-.

CPROl-12 .*S1**2*S2**2*CA.PI*CA.P2+4.**Sl**2*CA.PI**2-8. *
*Sl**2*CAP1+4. *S2**2*CAP2**2-8.*2**A23
CPRO2-4. *Sl**2*CA~P1+4. *S2**2*CAP2-3.
CPRO3-1.
A~l) --CPROO+CPROl-CPRO2+CPRO3

A(2)..3.*CPROO-CPR01-CPR02+3. *CPRO3
A(3)--3 .*CPROO-CPR01+CPR02+3.*CPR03
M()-CPROO+CPR01+CPRO2+CPRO3

128

The numerical program calculates the border of the stability region in the CAP2, CAP 1 plane for
difference scheme (18). The dimensionless quantities CAP1, CAP2 are defined by

CAPI= CT-, CAP2=-hx ' y

From [4] we know that the stability condition of (18) is CAP 1+CAP2 < 1. The numerical results of
our interface are in very good agreement with this condition.

References
[1] Samarsky A.A and Gulin A.A., Stability of Difference Schemes. Nauka, Moscow, 1973.
[2] Roache P.J., Computational Fluid Dynamics, Hermosa, Albuquerque, 1976.
[3] Richtmyer R.D., Morton K.W., Difference Methods for Initial-Value Problems, 2nd ed.,

Wiley-Interscience, New York, 1967.
[4] Vorozhtsov E.V., Ganzha V.G. and Gorsky N.M., Preprint No. 23, Inst. Theor. Appl. Mech.,

Novosibirsk, 1985.
[5] Vorozhtsov E.V., Ganzha V.G. and Mazurik S.I., Symbolic-Numerical Interface Investigations

by Computers about the Stability of Difference Schemes . Numerical Methods of Fluid
Mechanics, vol. 17, No. 5, Novosibirsk, 1986.

[6] Liska R., Comput. Phys. Commun. 34 (1984) 175.
[7] Mazurik S.I., Preprint No. 24 Inst. Theor. Appl. Mech., Fovosibirsk, 1985.
[8] Thune M., IBSTAB-A Software System for Automatic Stability Analysis of Difference

Methods for Hyperbolic Initial-Boundary Value Problems. Ph.D. Thesis, Uppsala University,
Uppsala, 1984.

[9] Gantmacher F.R., Theory of Matrices, 3rd ed., Nauka, Moscow, 1967.
[10] Postnikov M.M., Stable Polynomials, Nauka, Moscow, 1981.
[11] Warming R.F., Beam R.M. and Hyett B.J., Math. Comput. 29 (1975) 1037.
[12] Hearn A.C., REDUCE Users Manual, Version 3.3, The Rand Corporation, CP 78, Santa Mon-

ica 1987.
[13] Gantmacher F.R., Application of the Theory of Matrices, Interscience Publishers Inc. New

York 1959.
[14] Shokin Y.I., The Method of Differential Approximation, Springer-Verlag, Berlin 1983.
[15] Hirt C.W., Heuristic stability Theory for Finite-difference equation, J. Comput. Phys. (4), 339-

355, 1968.
[16] Cloutman L.D. and Fullerton L.W., Automated Heuristic i "s for Nonlinear

Equations, Los Alamos Scientific Laboratory, Los Alamos 197'.
[17] Ganzha V.G. and Vorozhtsov E.V., The Stability Analysis of Diffe... e Schemes by Numeri-

cal Solution of the Generalised Routh-Hurwitz Problem, Computer Physics Communications
43 (1987) 209-216.

[18] Mazurik S.I., Algorithms of Solving the Task about Locating Roots of Symbolic Polynomials,
Their Realization on Computer and Applications, Institute of Theoretical and Applied Mechan-
ics, No. 24-85, Novosibirsk 1985.

[191 Wirth M.C., On the Automation of Computational Physics (Ph.D. Thesis), Lawrence Liver-
more Laboratory, UCRL-52996, Livermore 1980.

[20] Basic REFAL, A Description of the Language and Fundamental Programming Methods (Sys-
tematic Recommendations), 44, Moscow, 1974.

129

Signs of Algebraic Numbers

Takis Sakkalis
New Mexico State University, Las Cruces

Abstract. This paper presents an algorithm for the computation of the sign of the value
of a polynomial at an algebraic number.

1. Introduction

An algebraic number x0 is a real root of an integer polynomial. It is usually given by
the following data:

(i) A square factor free integer polynomial p(x), and
(ii) A rational interval [a, bI, a < b, such that p(a)p(b) 6 0 and x0 is the only root of

p(x) in (a,b).

Let al,a2, ... , an be algebraic numbers defined by pl(xl), p.(Xl),... ,pn(xn), [aj,fiJ,
. , [ae,,J.], n > 1. In this paper we present an inductive procedure for the computation

of the sign of F(ai,..., an), where F(x 1 ,..., X,) E Q[x,..., x,]. Our method is based on

the notion of Cauchy index (§2), and the main result of this paper is Proposition 2.6.

2. Preliminaries and the Case n = 1

DEFINITION 2.1. Let R(x) be a rational function, and [a,b] a closed interval, a < b,
so that R(a) and R(b) are finite. The Cauchy index IbR of R(x) over [a, b] is defined as
IbR = N - N;, where N_+ and N; denote the number of points in (a, b) at which R(x)
jumps from -oo to +oo and from +oo to -oo respectively, as x increases from a to b. By

convention IbR = -IbaR.

Example 2.2. According to the definition if R(x) = - + R, (x), where Ai, o E
R, i = 1,...,m, and RI(x) is a rational function without real poles, then IaR =
2 a<a,<b signAl. In particular, if f(x) is a real polynomial with f(a)f(b) 0 0, then
I is simply the number of distinct real roots of f(x) in (a, b). Moreover, Ito is the

number of distinct real roots of f(x).

One of the methods of calculating the Cauchy index is based on Sturm's theorem.
Consider polynomials r(x),s(x) over the reals, and let = a, b E R, a < b. We
are going to 'Compute IbR by constructing a sequence of polynomials q,... , qk, qi R [x],
using the Euclidean algorithm for finding the greatest common divisor of two polynomials.

(The sequence qh,..., qk is often called a generalized Sturm sequence for the pair (s, r)).
First, we may suppose that deg(s) > deg(r). For if deg(s) < deg(r), we write r(x) =

r2(X)S(X) + ri(x), deg(ri) < deg(s), and replace with ri since 1 ,! = br E, as Example

2.2 shows. Then, we set qj = s,q2 = r and qj = fiqi+l - qi+2, deg(qi+ 2) < deg(qi+),

i = 1,..., k - 2, qk = gcd(r, s). We now have:

THEOREM 2.3 (STURM) [2]. Let r,s,R, ql,... ,qk be as above. Let V(x) denote the
number of sign changes in the sequence of numbers q, (x),... , qk(x), x E R. Then

16R = 6r = V(a) - V(b).
S

Now consider polynomials p(x, y), q(x, y) over Qjx, y] with no common factors, and let
f-= (p, q). A point ze = (xo, yo) E R2 is a zero of f if f(zo) = (0, 0). Let r = [a, b] x [c, d],

a < b,c < d be a rational rectangle so that no zero of f lies on its boundary OP, and
p. q 9 0 at its vertices. We set

(,) q~b, y), q(x,d), qCa,y)
R3R R4 R, - and

p(,c)' = p(b,y)' p(,d) 1 p(a, y)

irr =X~R3+ Jd R2 + 1g 64 R .
IrfIR3+IH+ H+ IdcR

Also, consider the Gauss map G = AP : r --+ S1, where S is the unit circle, and both

Or and S' carry the counterclockwise orientation. Then the degree d of G is an integer
which, roughly speaking, tells how many times or is wrapped around S1 by G. We have:

PROPOSITION 2.4. [3]. For G,f, r,d as above, d =-Irf.

Let J -Z - -8Z be the Jacobian determinant of f and z0 be a zero of f. We say
that z0 is non-degenerate if J(xo) 5 0. Suppose that all zeros of f which lie in the interior,
Intr, of r are non-degenerate. Then the above Proposition yields the following:

COROLLARY 2.5. Under the above considerations,

sign J(zo)= 1-rf.
f(zo)(,o)
zoE ntr

We now proceed with the first step of our inductive procedure. Recall that we are given
an algebraic number xo defined by p(x), [a, b]. Let F(x) E Q[x]. Our aim is to determine
the sign of F(xo).

First, by replacing F, if necessary, with F ± p we may suppose that
F(a) . F(b) 9 0. Next, we consider D = gcd(p, F) and for x C R we set

1 ifp()<O 11 if p(x)F(z) >0
Vo) 0 otherwise Vo() 0 otherwise.

131

Finally, define an integer I as follows:

I = V.o(a) - V0(a) - 1.'-L + w0@b) - V.(b).

The following provides the basis for the computation of sign F(xo).

PROPOSITION 2.6. (i) F(xo) = 0 if and only if D(a)D(b) < 0.
(1i) If D(a)D(b) >_ 0 then F(xo) > 0, F(xo) < 0 if and only if 10 0, I = 0 respectively.

PROOF: (i) Suppose D(a)D(b) < 0. Then there exists a point x' inside (a, b) so that
D(x') = 0. But since D is the greatest common divisor of p and F, we conclkde that
p(x') = F(x') = 0 and therefore x' = xo because [a, b] isolates the root x0 of p(x).

(ii) Let f be the vector field defined by f = (p(x), y - F(x)), and let M be a positive
integer so that maxa<,<b IF(x)l < M. Also, consider the rectangle r = [a, b x [0, M].
First, we observe that zO = (xo,F(xo)) is the only zero of f within the region a < x < b.
Further, zo is non-degenerate since x0 is a simple root of p(x). A calculation now verifies
that I = -Irf, and therefore as Corollary 2.5 shows, zo is inside, outside r, if and only if
I 0, I = 0, respectively. I

3. The General Case

Consider algebraic numbers al,..., an given by pl(xl),...,p.(x,),
[a1,#],.. ,[a,#n],n > 2,pi(xi) E Z[xi], ai,#i E Q, i = 1,... ,n, and let f(xl,.. -,Xn) E

Q[XI,...,x,]. In this section we are going to determine the sign of F(ai,...,a,) using
induction on n; that is we suppose that given a polynomial i1(xl,... ,x,), k < n, we can
decide the sign of i1(al,..., ak).

For notation purposes we set x = (xi,.... ,x,-), a = (aj,...,an-.). Denote by
I = Q[x]. We also regard F as a member of I[Xnl, and write F = Ej F(x)x,.

We may suppose that F(a, x,) # 0, since F(a, x,) = 0 is decidable by induction. We are
first going to construct a sequence of polynomials ql,... , qk, qi E I[Xnj, so that the sequence
q, (a, Xn),... ,qk(aiXn) is a generalized Sturm sequence for the pair (F(a,x,,),Pn(Xn)).

To achieve that we invoke the process of pseudo-division in the ring I[x,]. Let F1, F2

be non-zero members of I[XnJ, di = deg(F),i = 1,2, and suppose d, > d2 > 0. Then
we can find a unique pseudo-quotient Q = pquo(F, F2), and a unique pseudo-remainder

R, = prem(F1 ,F2) such that f62+lF 1 = QF2 + R1 , and deg(RI) < deg(F 2), where f 2 is
the leading coefficient of F2 and 8 = d, - d2 [1].

For a polynomial G = Fj Gj (x)xj E I[x,] we denote by GO, = X 0= Gj(x)xzj, where
A = deg(G(a, x,)). Let now m, d be the degrees of F(a, x.), p,(x,) and assume

132

that d > m. We construct q1, q2, ... ,qk inductively as follows: q1 = F', q2 =

[sign Fm(a)]d- m+ 1 " M, where R 2 = prem(pn,F), and qi+l = -[sign Li(a)]61+• R4l ,

i=1, ,k-, and Li = leading coefficient of q., Ri+1 = prem(qi-1,qi), 6i =

deg(qi) - deg(qi+i).

We now proceed with the computation of signF(a, an). First, we may suppose that
F(a, ce,).- F(a, P.) 96 0.

Next we define V n(X.), V0"(x.), In, for x. E R as follows:

{ if pn(x,) < 0 1 if pn(x.)F(a, X.) > 0
VZ(x,) = 0 otherwise ' 0 otherwise

pn (xn)I. = V (a.) - V"(o.) - I.° a + V0 (fiX) - (O) •

nF(a, X n) +Vnfn

We observe that if -f is a rational number, the quantities VZ(y), Vn(-y), I'n are all

computable by the induction hypothesis.

Now Proposition 2.6 yields the following:

Remark 3.1. (i) F(a,an) = 0 4' qk(Ce)qk(fl,) < 0

(ii) If qk(an)qk(fln) >_ 0 then F(a,a,) > 0, F(a,a,) < 0 4* In 0, In= 0, respectively.

We close this section with an observation. Let G E I[xn]. Then by determining the sign

of (F - G)(a, an) we can compare the algebraic numbers F(a, an) and G(a, an). Moreover,

we can calculate the number of distinct real roots of F(a, x.).

4. An Application

I. Zeros of a Polynomial Vector Field. Let p(x, y), q(z, y) be polynomials over Q[x, y]

with no common factors and consider the vector field f = (p, q). A point Zo = (x0 , yo) E R2

is called a (real) zero of f if f(zo) = (0,0). In this paragraph we describe a method

for isolating the zeros of f. Consider u(x) = Resy(p,q) and v(y) = Res.(p,q) and let

w = (u, v). We observe that every zero of f is also a zero of w. However, the converse

is not always true. Consider then zo = (xo, yo) E R2 so that w(zo) = (0,0). We are

going to decide whether f(zo) = (0, 0). To achieve that, let r = (a, b] x (c, d] be a rational

rectangle isolating zo and let I = Irf. We observe (Proposition 2.4) that if I 0 then

f(zo) = (0,0). On the other hand, if I = 0, then by calculating the sign of f(zo) (§3),

we can decide whether z0 is a zero of f. Finally, by repeating the above procedure over

all such rectangles r, isolating the zeros of w, we construct k mutually disjoint rectangles,

k > 0, so that each such rectangle contains exactly one zero of f in its interior.

133

II. A Decision Method for an Algebraic Curve. In [4], A. Seidenberg gave a decision

method for an algebraic curve. His method is based on elimination procedures, such
as resultants, and an intelligent change of coordinates. In this paragraph we describe

another method which is based on the ideas of previous sections. Let g(x,y) be an integer
polynomial of degree m, m > 0 and let the curve C be defined as C = {(x, y) E R2 1g(X, y) =

0). We will then give a procedure which decides whether C is empty.

We may assume that g(x, y) is square factor free and it is not divisible by a non-constant
s(x), s(x) E R[x]. We then consider the following two cases:

A. m is odd. Let 4(x,y) be the homogeneous part of g(x,y) of degree m. Consider an
integer k so that q(k, 1) # 0, and let t(y) = g(ky, y). We observe that the coefficient
of ym in t(y) is the non-zero constant (k, 1). Therefore, t(y) has at least one real
root, since it is of odd degree, and thus C is non-empty.

B.m is even. In this case we consider h(x) = Resy (g, and let M he a positive

integer so that all real roots of h(z) are inside (-M, M). Then we can determine
the number of real roots of g(-M, y) and g(M, y). If both of the above numbers are
zero, we note that C is a bounded subset of R2 . If C is empty, we are done. Suppose
then that C is non-empty. Then, there exists a real pair (xo,yo) = zo for which
g(zo) = £- (zo) = 0. To see that it is enough to observe that if C is (real) non-singular
then it has at least one component which is diffeomorphic to the unit circle. Now let

f = (g,). But then we can decide (§4.1) whether f has any (real) zeros. That
finishes our decision procedure.

We close this section with an example which was carried out using the SCRATCHPAD

II Computer Algebra System.

Example. Letp(x,y) = -y 4 +4xy 2+4x 2y+2xy+x 4 +x-1, q(x,y) = y3 +x2 y+x+4, and
f = (p,q). Then f has two zeros, namely z1,z2, and they are such zi E [-2,-1] x [-1,0]

and z2 C [1, 2] x [-2, -1].

References

[1] Brown, W.S. On Euclid's Algorithm and the Computation of Polynomial Greatest
Divisors, JACM, 18, pp.478-504 (1971).

[2) Gantmacher, F.R. Applications of the Theory of Matrices, Interscience, New York
(1959).

[3] Sakkalis, T. The Euclidean Algorithm and the Degree of the Gauss Map, IBM TR,

RC-13303, (1987).
[4] Seidenberg, A. A new decision method for elementary algebra, Annals of Math. 60,

(1954), pp.365-374.

134

Efficient Reduction of Quadratic Forms

Neil W. Rickert*
Department of Computer Science

Northern Illinois University, DeKalb, IL 60115

Abstract

The positive definite integer quadratic form, ax 2 + bxy + cy 2, is of some impor-
tance in number theory. For example such quadratic forms have been shown useful
in factorization of large integers. For many applications it is important to be able to
recognize when two quadratic forms are equivalent, so it is useful to be able to reduce
these quadratic forms to a canonical representation.

For applications in factorization, the quadratic forms used have large coefficients,
which must be represented as multiple computer words. This paper shows how to
efficiently reduce such multi precision quadratic forms.

1 Introduction

Two quadratic forms ax 2 + bxy + cy2 and Ax 2 + Bxy + Cy2 are said to be equivalent if there
is a unimodular substitution

which transforms the form ax 2 + bXy + Cj2 into AX 2 + BXY + CY 2. By unimodular we mean
that the matrix coefficients are integers and the determinant is 1. A very readable discussion
of quadratic forms may be found in [2].

For economy of notation we follow [2], and refer to the form ax2 + bxy + cy 2 as [a, b, c].
A positive definite quadratic form [a, b, c] is said to be reduced if either -a < b < a < c or
0 < b < a = c. As is shown in [2], each positive definite quadratic form is equivalent to
exactly one reduced form.

It is sometimes important to determine whether two positive definite quadratic forms
are equivalent. The standard approach is to convert the forms to their equivalent reduced
forms, a process known as quadratic reduction. Once in reduced form a direct comparison of
coefficients can be made to test for equivalence. Quadratic reduction has been shown useful
in factorization of large integers [3].

In this paper we are interested in the efficient reduction of quadratic forms whose coef-
ficients are too large to fit into a single computer word. This has application to the prime
factorization of large integers. Our approach is somewhat analogous to that used Lehmer [1]
to compute the GOD of large numbers.

The basic approach is to use the most significant parts of the coefficients as a shorter
precision approximation to the multi precision quadratic form. We use the standard reduction

*1 am grateful to A. 0. L. Atkin for his encouragement in this work. Most of this work was completed at
the University of Illinois at Chicago in conjunction with Atkin's project on the factorization of large integers.

procedure on this shorter precision form, and record the substitution matrix as in equation (1)
above. The matrix is then applied to the multi- precision quadratic form to partially reduce
it. This procedure is repeated until the reduction is complete. However careful analysis is
needed, since if at each such shorter precision step we go too far in our reduction, we risk
overshooting and thus failing to satisfactorily reduce the multi precision form.

2 Background

We shall hencefortli assume that [a, b, c] is positive definite, or equivalently that 4ac - 2 > 0,
a > 0, (whence c > 0). The transformation (1) yields the equivalent positive definite form
(A, B, C), where 4AC - B2 = 4ac - b and

A = aa2 -ba-y+ c- 2

B = -2aafl + b(a6 + fly) - 2c-18 (2)

C = a_ 2 -b38+c C
2

For convenience we say that a form is semi-reduced if IbI < min(2a,2c). The process of
reducing a quadratic form will be carried out in two phases. In the first phase the form is
transformed into an equivalent semi-reduced form. In the final phase the semi reduced form is
converted to a reduced form. Since most of the computation is involved with the first phase,
it is there that we shall concentrate our discussion. However it is convenient to first describe
the final phase.

3 Reduction of a semi-reduced form

It is relatively easy to go from a semi-reduced form to a reduced form. The reduction proce-
dure is well known, and can be carried out in several simple stages.

Stage 1. If IbI < min(a,c) we bypass this stage. Otherwise, assume for simplicity's sake
that a < c and b _> 0 whence b > a. Then the substitution x = X - Y, y = Y transforms
the form [a, b, c] into the form [A, B, C] = [a, b - 2a, a - b + c]. Clearly -A < B < 0 so
that IBI < A. Likewise IBI < C as can be seen by noting that B + C _> 0. If, on the other
hand, a < c but b < 0 the substitution x = X + Y, y = Y yields a similar result. If a > c a
symmetric substitution can be used.

Stage 2. By now we have reached the stage where Ibi < min(a, c). If a > c or if a = c, b < 0,
then the substitution x = Y, y = -X transforms the form [a, b, c into the form [c, -b, a].

Stage 3. The form is now reduced except in the special case of a form [a, -a, c] where
a < c. The substitution x = X + Y, y = Y transforms this into the form [a,a,c], and our
positive definite quadratic form is now reduced.

4 Reduction of a form to semi-reduced form

It is convenient to make the assumption that b > 0. Since the substitution x = Y, y = -X
transforms the form [a, b, cl into the form [c, -b, a], there is no loss of generality in making this
assumption. In practice it is unnecessary to make such a substitution. We merely record the
sign of b for later use, and then use the absolute value of b in the reduction to semi-reduced
form. Once it is semi-reduced we again make use of the sign of b. Under the assumption that
b >_ 0, we do our reduction in a manner which maintains this inequality throughout. This
turns out to greatly simplify the analysis.

136

If a < c, we divide b by 2a, yielding a quotient q and a remainder r. The substitution
x X - qY, y = Y transforms [a, b, c] into the form [A, B, C] = [a, b - 2aq, c - q(b - aq)]. If
A C, our form is then semi-reduced. Similarly if c < a we divide b by 2c yielding quotient
q', and make the corresponding substitution x = X, y = -qaX + Y.

We repeat these procedures until the form is semi-reduced. If, in the process, a or c is
changed to a non-positive value, the original form was not positive definite. The positive
value of the discriminant 4ac - b is invariant, and this limits how small a and c may become.
Since b is reduced at every step, the process must terminate. This approach is somewhat
reminiscent of the Euclidean algorithm for computing the greatest common divisor of two
integers.

5 Analysis of the quadratic reduction procedure

At each step in our procedure we can consider the substitutions we are making as special
cases of the substitution (1), where the unimodular matrix is either

We may effectively combine several such steps by multiplying the corresponding matrices,

to yield a combined substitution (1), where:

a>o, 3_o0, 7>_0, 6>0. (3)

It turns out that substitution (1) and inequalities (3) are all that is needed for an effective
analysis of the procedure. Since the matrix in (1) is unimodular, we can easily invert it,
yielding:

As we have seen, substitution (1) transforms the form [a, b, c] into [A, B, C], where A, B, C
are determined by equations (2). Likewise using substitution (4), we see that we can calculate
[a, b, cl from [A, B, C] using:

a = AP + B 7 S+ C 7l
b = 2A/38 + B(aS + #-I) + 2Cay (5)
c = A# 2 +Bcfl+Ca

C2

Given the inequalities (3), together with our assumption thaf the computations always
proceed so that A > 0, B > 0, C > 0 then equations (5) imply thiat A, B, C are considerably
smaller than a, b, c as required. It is not necessary that we follow the exact procedure we
described in order for this to be true. We must, however, be careful to proceed so as to
maintain the validity of the inequalities we are assuming.

6 Reduction of multiple precision forms

A large integer is represented as a binary number. With the hardware we used (machines in
the IBM 370 series) a normal integer word is 32 bits. Our long numbers thus use one word
for each 32 bits, and are represented as integer arrays. In a sense we can think of a number

137

as being represented internally with base 232, so that each computer word is one digit in this
representation.

Assume now that 2a, b and 2c are n-bit numbers; here we allow some of the numbers to
have leading zero bits. If binary representation is used it is not necessary to actually compute
2a and 2c; they are already implicitly available in the binary representations of a and c. We
use the first k bits of each, and refer to these as 2ao, bo and 2co. It is convenient to think of
a, b, c as having each been divided by 2" - so that for example bo represents tile integer part
of b and 2ao represents the integer part of 2a. Then we can write

a=ao+al, b=bo+bl and c=co+c

where 1 1
0 0<a,< , 0<5b1 <1, 0<cl< (6)

The idea is to (semi-) reduce the form [ao, bo, coj rather than the original form, but to
record the matrix of the substitution (1) used, and then apply the same substitution to the
original form [a, b, c). This greatly reduces the number of multiple precision steps required and
so results in a significant increase in the speed of reduction. While applying this procedure
we must observe a few precautions. Although the quadratic form fa, b, c] is positive definite,
it is possible that [ao, bo, co] is not. If we apply a substitution which transforms [ao, bo, c] into
[Ao, Bo, Co], it is not sufficient that BO > 0. In order for our analysis to apply we must also
ensure that B > 0, even though we avoid actually computing B at each stage.

At any partial stage we can apply equations (2) and inequalities (6) to see that

2A < 2Ao + c,2 + y2

B > Bo -(fl+ 6)

2C < 2Co+/ 2 + 6 2

While reducing [Ao, Bo, Co], instead of dividing Bo by 2AO, we divide Bo - (af + -YS) by
2Ao + a2 + y

2. This ensures that, if anything, our quotients may be too small, and so
guarantees that always B > 0. We continue working with [Ao, Bo, Co] until the quotients are
0, meaning that no further progress can be made. At this stage we apply the accumulated
matrix substitution to the full numbers, then we again extract the leading parts of each and
recommence the procedure.

When we extract the leading k bits of our coefficients, there is always a question as to what
should be k. We chose k - 56, based on the pragmatic consideration that this number of bits
would permit us to still use the double precision floating point divide instruction, thereby
simplifying our computation. From equations (5), we conclude that by the time a, , ,

have grown to be about 14 bits, the values of Ao, B0, Co will have been reduced to about 28
bit numbers. Since in our division we are using 2Ao + a2 + -2 in place of 2Ao, this is about
where we would expect to stop making progress. To apply the matrix substitution to the full
long numbers entails evaluating the right hand sides of (2). The multipliers here are each
products of two matrix entries, so we would expect them to be about 28 bits, which is close
to the maximum 31 bit numbers we wish to handle in that stage of reduction. When we do
this reduction of the full form, equations (5) again imply that we should cut about 28 bits
from each of the coefficients of the full quadratic form.

7 Special considerations

During the reduction process, when dividing b by 2a it may occasionally happen that the two
numbers are of substantially different orders of magnitude. When this occurs there is little

138

choice but to do a division using tile full lengths of the numbers. This occurs rarely, and
signals that this step will make very substantial progress toward the semi-reduced form.

Likewise it may occasionally happen that tile two numbers are almost equal in value, so
that the leading parts of tile numbers are inadequate to find a non-zero quotient. In this case
either the form is already semi-reduced, or the quotient is 1, and the computation with the
full coefficients is relatively straight forward. This condition also occurs infrequently. It may
occur in the last one or two steps of tile semi-reduction phase, indicating that we are almost
done. If it occurs at other times, it signifies a large reduction in the values of the resulting
coefficients, so again substantial progress is made in such a step.

References

[1] D. H. Lehmer. Euclid's Algorithm for Large Numbers. Amer. Math. Monthly 45 (1938)
pp. 227-233.

[21 W. J. Leveque. Topics in Number Theory, vol 2. Addison-Wesley, 1956

[3] D. Shanks. Class number, a theory of factorization, and genera. Proc. Symp. Pure Math.
20 (1971) 415-440.

139

. - ------ ---

A Story About Computing with Roots of Unity

F.Bergeron*, D6p. Maths et Info,
Universit6 du Quebec a Montreal,

Abstract. In the course of studying idempotents of the group algebra of the
symmetric group that characterize Lie elements of thefree symmetric algebra, we
show how we obtained new unexpected results trough computer algebra
experiments. This was the direct result of computing in the ring of polynomials
modulo the cyclotomic polynomial, instead of computing with roots of unity.

1. Introduction

In the course of studying the nth homogeneous component of the free Lie algebra over an
alphabet A (see [1] and [5]), we were led to investigate certain idempotents of the group algebra,
Q(Sn), of 5,- Recall that this algebra is the linear span of permutations with the product obtained by
linear extension of composition. We wanted, in part, to understand combinatorially why the element

of Q(Sn) is an idempotent. Here, o is a nth primitive root of unity, and maj(s) stands for the
major index of the permutation a, that is

n-I

maj(a) = i (a(i)>G(i+l)).
i=1

We further considered another idempotent On of this same algebra:

I --X I deso)g

with

des(a) = #(i I a(i)>a(i+l)).

Then, we wanted to show that multiplication (through the action of the symmetric group on positions)

(* with support from grants A9041 NSERC-Canada, and EQ1608 FCAR-Qudbec)

1*

of words on A by ic, gives Lie elements. This also corresponds to proving the identities:

i) On 1n =On
ii) Kn 0, 1C,¢.

In the course of experiments with these idempotents and identities using MAPLE, the basic
difficulties we encountered were connected with the limitations of the simplification algorithm for
expressions involving complex numbers. Our answer to this problem was to substitute computations
with complex expressions involving nth primitive roots of unity, by computations in the ring of
polynomials Q[q] in one variable q, modulo the nth cyclotomic polynomial n(q). This approach
had already been considered by others (see [3]), but what is noteworthy in the present case, is that it
gave us unexpected new results.

2. The Story

As we have briefly outlined in the previous section, we wanted to deal with expressions of the

form

oeT

for particular subsets T of 5,, and co an nth root of unity. For the choice of subsets that we had in
mind, we expected that the value of such an expression would be simple; typically 0, -1 or some
power of co. Thus the simplification problem was crucial to us. Our first experiments, using the

built-in simplification procedures of MAPLE, gave expressions filling easily pages of output. Even a
simple case such as:

417 3 1

e +L 5+ (e5 + J + 1,

we would obtain:
4 2 3

8 cos(2/5 Pi) - 6 cos(2/5 Pi) + 1 + 4 cos(2/5 Pi) - 2 cos(2/5 Pi)

3
+ (8 cos(2/5 Pi) sin(2/5 Pi) - 2 cos(2/5 Pi) sin(2/5 Pi)

2
+ 4 cos(2/5 Pi) sin(2/5 Pi)) I,

instead of the expected value 0. Getting useful information out of this was clearly hopeless. Thus we
had to resort to other means.

141

As is well known, the nth cyclotomic polynomial, 0,(q), is monic and irreducible over Q,
and by definition every primitive roots of unity is a root of On(q). Thus, 0,(q) is the minimal
polynomial for nth primitive roots of unity. Hence, the field Az=Q[q]/10(q) of polynomials in q
modulo 0,(q), is isomorphic to the field Q(o) obtained by adjunction of an nth primitive roots of

unity 0) to the field Q of rationals. There is clearly a computable (via Euclid's Algorithm) canonical
form for expressions in this field A.

For each integer k, let us define the polynomial rk(q) to be the (monic) remainder of the
division of qk by 0,(q). Now, we shall do computation in the group algebra A(S,) with

Kn(q) = I T r J()(q) a,

instead of cn. The first thing we did check was that icn(q) (for all n) is indeed an idempotent
modulo the cyclotomic polynomial:

Kn(q) K¢n(q) -=<rod ,,(q)) Kn(q) .

But while trying to understand the role of the variable q in this context, we computed the square of

Kn(O) (observe that 0 is not a root of 4n(q)). We were quite surprised when the result came out to be

wcn(0). This could only mean that icn(q) is an idempotent without taking modulos:

Kn(q) K (q) = iKn(q)" (1)

In fact, further experiments showed that: Ke(q) JCn(p) = K (q), with p and q independent variables.

This led us to the following observation. Let us expand icn(q) with respect to powers of q and with

coefficients in the group algebra A(Sn):

icn(q) = "O + 'tq + "2q +... + "sq s ,

where s =deg(On(q)) - 1. Then one has:

=xi , if i=0,

~.~.~0 otherwise.

which explains our previous observations.

For another aspect of our study, we wanted to explore the products iKn(q) O and O, Kn(q).

At that time we only used the fact that o) is an nth root of unity, hence we did computations modulo

142

the polynomial qn - 1. Let us define %,(q) in the following manner:

K n(q) = -q0]() f .

Clearly Kw(q) and K,(q) are the same modulo 4n(q), but as we have just mentioned, we were then
working modulo (qn - 1). We already knew enough about the subject to be able to show that

On Kn(q) = (l-q) (1-q2) ... (1-qn'1) On" (2)n

which gave us the desired identity, since the numerator (l-q) (1-q2) ... (l-q n -l) is equal to n
modulo 0,(q). But we did not even know what would be the outcome of Kn(q) On other than the

fact that Xn((O) On = %,n(O), for o an nth primitive root of unity. Thus we tried to reduce the
problem to something more manageable in the following way. For a subset T=(tpt2, ... tk. 1 } of the

set (1,2, ... n -1), let DT stand for the set of permutations:

DT= (a- Sn I(i)>_o(i+l) implies ieT).

It is not to hard to show that (2) would follow from the identity (with cY any permutation)

X qma(a")c 0.
(;eDr

But we were really trying at the time to compute these, expressions modulo (qn - 1). Further

experimentations suggested the following beautiful evaluation which implies the preceding assertion:

I qmji(d-1)_ q mai pl pn ... Pk]q. (3)
ar q e(oo 1)

This identity was later shown to be true by M. Wachs (personal communication), by a combinatorial

argument involving q-enumeration. Here, the brackets stand for the q-multinomial coefficient, and

the Pi's are as follows: pl=tl, P2=t2-tl, P3=t3-t2 , ... , Pk=n -tk.1. The multinomial coefficient in
question is equal to 0 modulo the cyclotomic polynomial nq).

In fact, we went a little further in our investigations, and trough more computer experiments
and mathematical manipulations we were led to the following relation:

XnqO - (I-q) (1-q2) ... (1-qn'l) 'nq" (4)
] (q)n-d e" -1) n

which we were than able to prove.

143

3. Conclusion

In this note, we have outlined how we conducted our research with the help of a computer
algebra system. As was shown, the use of algebraic devices (working modulo some polynomial) to

compensate the weaknesses of the simplification algorithm(s) for complex expressions, gave us much
more than just a convenient solution. One of the outstanding effect of this use of MAPLE was the

unveiling of unexpected formulas such as (1), (2), (3), and (4). That is why this approach ought to be
publicized.

Bibliography

[11 F. Bergeron, N. Bergeron and A.M. Garsia, Idempotentsfor the Free Lie Algebra and
q-Enumeration, (to appear in IMA 1988 Combinatorics Workshop Proceedings,
Springer-Verlag).

[2) A. BJorner and M. Wachs, q.Hook Formulas for Trees and Forests,
(to appear in Journ. Combin. Theory, series A).

[31 C. Dicrescenzo and D. Duval, Algebraic Computation on Algebraic Numbers, in
Computers and Computing, Ed.: P.Chenin, C. di Crescenzo and F.Robert,
Wiley-Masson, 1986.

[4] B.W. Char, K.O. Geddes, G.H. Gonnet and S.W. Watt, MAPLE User's Guide,
WATCOM, 1985.

(5] A.M. Garsia, Combinatorics of the Free Lie Algebra and the Symmetric Group,
(to appear in a volume commemorating J. Moser's 60th birthday),

144

Exact Algorithms for the Matrix-Triangularization

Subresultant PRS Method

Alkiviadis G. Akritas

University of Kansas

Department of Computer Science

Lawrence, Kansas, 66045

Abstract. In [21 a new method is presented for the computation of a greatest common divisor
(gcd) of two polynomials, along with their polynomial remainder sequence (prs). This method is
based on our generalization of a theorem by Van Vleck (1899)[12] and uniformly treats both normal
and abnormal prs's, making use of Bareiss's (1968)[4) integer-preserving transformation algorithm
for Gaussian elimination; moreover, for the polynomials of the prs's, this method provides the
smallest coefficients that can be expected without coefficient gcd computations. In this paper we
present efficient, exact algorithms for the implementation of this new method, along with an
example where bubble pivot is needed.

1. Introduction

In this note we restrict our discussion to univariate polynomials with integer coefficients and to
computations in Zix], a unique factorization domain. Given the polynomial p(x) = cnxn +

cn-lxn-l+...+cO, its degree is denoted by deg(p(x)) and cn, its leading coefficient, by lc(p);

moreover, p(x) is called primitive if its coefficients are relatively prime.
Consider now pl(x) and p2(x), two primitive, nonzero polynomials in Z[x], deg(pl(x)) = n

and deg(p2(x)) = m, n a m. Clearly, the polynomial division (with remainder) algorithm, call it

PD, that works over a field, cannot be used in Zfx] since it requires exact divisibility by lc(p2). So

we use pseudo-division, which always yields a pseudo-quotient and pseudo-remainder; in this

process we have to premultiply pl(x) by lC(p2)n-m+l and then apply algorithm PD. Therefore we

have:

IC(P2)n-m+lpl(x) = q(x) P2(x) + p3(x), deg(p3(x)) < deg(p2(x)). (1)

Applying the same process to P2(x) and P3(x), and then to p3(x) and p4(x), etc. (Euclid's

algorithm), we obtain a polynomial remainder sequence (prs)

Pl(x), P2(X), P3(x), ... Ph(X), Ph+l(X) = 0,

where Ph(x) # 0 is a greatest common divisor of pl(x) and p2(x), gcd(pl(x),p2(x)). If ni =

deg(pi(x)) and we have ni - ni+1 = 1, for all i, the prs is called normal, otherwise, it is called

abnormal. The problem with the above approach is that the coefficients of the polynomials in the
prs grow exponentially and hence slow down the computations. We wish to control this

coefficient growth. We observe that equation (1) can also be written more generally as

lc(pi+l)ni'ni+l+lpi(x) = qi(x) pi+l(x) + Pii+2(x), deg(pi+2(x)) < deg(pi+l(x)), (2)

i = 1,2 h-l. That is, if a method for choosing 3i is given, the above equation provides an

algorithm for constructing a prs. The obvious choice 13i = 1, for all i, is called the Euclidean prs; it

was described above and leads to exponential growth of coefficients. Choosing 13i to be the

greatest common divisor of the coefficients of pi+2(x) results in the primitive prs, and it is the best

that can be done to control the coefficient growth. (Notice that here we are dividing pi+2(x) by the

greatest common divisor of its coefficients before we use it again.) However, computing the
greatest common divisor of the coefficients for each member of the prs (after the first two, of
course) is an expensive operation and should be avoided. So far, in order both to control the

coefficient growth and to avoid the coefficient gcd computations, either the reduced or the
(improved) subresultant prs have been used. In the reduced prs we choose

PI = I and 3i = lc(pi)ni - ni+1+1, i = 2,3,...,h-l, (3)
whereas, in the subresultant prs we have

p, = (-1)nl-n2+1 and 3i = (-1)hi - ni+l+llc(pi) Hini - ni+l, i = 2,3,...,h-l, (4)

where

H2 = lc(P2)nl'n2 and Hi = lc(pi)ni-l-ni Hi-11 - (ni.1 - ni), i= 3,4,...,h-1.

That is, in both cases above we divide pi+2(x) by the corresponding Pli before we use it again. The

reduced prs algorithm is recommended if the prs is normal, whereas if the prs is abnormal the

subresultant prs algorithm is to be preferred. The proofs that the fli's shown in (3) and (4) exactly

divide pi+2(x) are very complicated [7] and have up to now obscured simple divisibility properties

[10], (see also [5] and [6]). For a simple proof of the validity of the reduced prs see [1]; analogous
proof for the subresultant prs can be found in [8].

146

In contrast with the above prs algorithms, the matrix-triangularization subresultant prs
method avoids explicit polynomial divisions (explained below). In what follows we present
efficient, exact algorithms for the implementation of this method. We also present an example
where bubble pivot is needed.

2. Gaussian elimination and Sylvester's form of the resultant

Consider the two polynomials in Z[x], p(x) = cnxn + cn.lxn-l+...+ co and p2(x) = dmxm +

dm.lxm'l+...+ d0 , cn* 0, dm 0, n > m. Contrary to established practice, we choose to call

Sylvester's form of the resultant of pl(x) and p2(x) the one described below; this form was

"buried" in Sylvester's 1853 paper [11] and is only once mentioned in the literature in a paper by
Van Vleck [12]. Sylvester indicates ([11], p.426) that he had produced this form in 1839 or 1840
and some years later Cayley unconsciously reproduced it as well. It is Sylvester's form of the
resultant that forms the foundation of our new method for computing polynomial remainder
sequences; however, we first present the following theorem concerning Bruno's form of the
resultant (the form encountered most often in the literature under the Sylvester's name):

Theorem 1 (Laidacker[9]). If we transform the matrix corresponding to resB(Pl(x),P2(x)) into

its upper triangular form TB(R), using row transformations only, then the last nonzero row of

TB(R) gives the coefficients of a greatest common divisor of pl(x) and P2(x).

The above theorem indicates that we can obtain only a greatest common divisor of pl(x) and

p2(x) but none of the remainder polynomials. In order to compute both a gcd(pI(x),p2(x)) and all
the polynomial remainders we have to use Sylvester's form of the resultant; this is of order 2n (as
opposed to n+m for the other forms) and of the following form (p2(x) has been transformed into a
polynomial of degree n by introducing zero coefficients):

Cni Cn'l" .. CO 0 0 ... 0

dn dn.1I... do 0 0 ... 01
n Cn c O 0 0

ress(p,q) 0 dn do 0 ... 0 (S)

0.. .0 n n.. . co

0 ... 0 dn dn. ... dOi

147

In general, if we have the polynomial remainder sequence PI(X), p2(x), P3(x), ph(x),

deg(pl(x)) = n, deg(p2(x)) = m, n > m, we can obtain the (negated) coefficients of the (i+l)th

member of the prs, i = 0, 1, 2, ..., h-1, as minors formed from the first 2i rows of (S) by
successively associating with the first 2i - 1 columns (of the (2i) by (2n) matrix) each succeeding

column in turn.

On the other hand, we transform the matrix corresponding to the resultant (S) into its upper
triangular form using Bareiss's integer-preserving transformation algorithm [4]. That is:
let r00(-1) = 1, and rij(O) = rij, ij = 1,...,n ; then for k < ij, < n,

rij(k): = (1 /rkl,kl(k- 2)). (5)(k1) rkj(k'l) (

rik(k-) rjj(k-1)

Of particular importance in Bareiss's algorithm is the fact that the determinant of order 2 is

divided exactly by rkl,k- 1(k-2) (the proof is very short and clear and is described in Bareiss's

paper [4]) and that the resulting coefficients are the smallest that can be expected without coefficient
gcd computations and without introducing rationals. Notice how all the complicated expressions

for Pi in the reduced and subresultant prs algorithms are mapped to the simple factor rk.l,k1(k-2)

of this method.
It should be pointed out that using Bareiss's algorithm we will have to perform pivots

(interchange two rows) which will result in a change of signs. We also define the term bubble pivot
as follows: if the diagonal element in row i is zero and the next nonzero element down the column is
in row i+j, j>l, thea row i+j will become row i after pairwise interchanging it with the rows above
it. Bubble pivot preserves the symmetry of the determinant.

We have the following theorem.

Theorem 2 ([2]). Let pI(x) and P2(x) be two polynomials of degrees n and m respectively, n

> m. Using Bareiss's algorithm transform the matrix corresponding to resS(pl(x),p2(x)) into its

upper triangular form Ts(R); let ni be the degree of the polynomial corresponding to the ith row of

Ts(R), i = 1, 2, ..., 2n, and let pk(x), k > 2, b.'- the kth member of the (normal or abnormal)

polynomial remainder sequence of pl(x) and p2(x). Then if pk(x) is in row i of TS(R), the

coefficients of Pk+l (x) (within sign) are obtained from row i+j of TS(R), where j is the smallest

integer such that ni+j < ni. (If n = m associate both pl(x) and P2(x) with the first row of TS(R).)

148

Notice that as a special case of the above theorem we obtain Van Vleck's theorem for normal

prs's. We see, therefore, that based on Theorem 2, we have a new method to compute the
polynomial remainder sequence and a greatest common divisor of two polynomials. This new
method uniformly treats both normal and abnormal prs's and provides the smallest coefficients that

can be expected without coefficient gcd computation.

3. Our method and its implementation

The inputs are two (primitive) polynomials in Z[x], pl(x) = cnxn + cn-lxn-I +... + co and p2(x)

=dmxm+dm-lxm-i+...+do, cn 0,dm O,nZ>m.

Step 1: Form the resultant (S), resS(pl(x),p2(x)), of the two polynomials pl(x) and p2(x).

Sten 2: Using Bareiss's algorithm (described above) transform the resultant (S) into its upper

triangular form TS(R); then the coefficients of all the members of the polynomial remainder

sequence of pl(x) and p2(x) are obtained from the rows of TS(R) with the help of Theorem 2.

For this method we have proved [2] that its computing time is:

Theorem 3. Let Pl(x) = cnxn + cn-lxn-1 +... + co and P2(x) = dmxm + dm.lxm' l +...

+ do, cno 0, dm 0, n m be two (primitive) polynomials in Z[x] and for some polynomial P(x)

in Z[x] let IPI,,. represent its maximum coefficient in absolute value. Then the method described

above computes a greatest common divisor of pI(x) and p2(x) along with all the polynomial

remainders in time
O(n5L(Iploo) 2)

where ,pl,,=max (Iplco, 1p2o,,,).

Below we present efficient exact (maple-like) algorithms for the matrix-triangularization
subresultant prs method. A subalgorithm call is the name of the subalgorithm in all bold letters.
All subalgorithm calls are from the main algorithm. Parameters (arguments) are not shown.
Comments are made within braces (). An explanation of the variables is found after the

algorithms.

149

start (deg(pl(x)) >= deg(p2 (x)))
initialize (set resultant matrix to zero, and initialize the variables used)
get polys (get coefficients of the first two polynomials)
buildmatrix (build the matrix corresponding to Sylvester's form of the resultant)
set k to 1 (k is the index for the transformation loop)
while k < n do (loop n- I times, unless gcd is found (see pivot))

if (r[k,k] = 0) then pivot fi (need to put a non-zero element into r[k,k])
if k < n then (in pivot, if gcd is found k is set to n+1 }

do transform; set d to r[k,k] od
fi
set kto k+l (increment main loop index)

od
end

initialize
nF1= deg(pl (x)); {deg(pl(x)) >= deg(p2(x)) }

n := 2*nli;

for i from I to n do
for j from I to n do

r[ij] := 0 (see notes on variables below)
od
tran[i] := false (see notes on variables below)

od
d:= I (no division for first transformation)

end

getpolys
{this is dependent on the language used and whether the program is interactive or reads data from a
data file; the function coeff(p(x), i) computes the coefficient of xi in the polynomial p(x))

fori from I to nl+1 do

r[1,i] := coeff(pl(x), nl+l-i) (put the coefficients of pl(x) in row I of the matrix)
r[2,i] := coeff(P2 (x), nl+1-i) (put the coefficients of P2(x) in row 2; remember that we have

to include leading zero if deg(p2 (x)) < deg(p1 (x)))
od

end

ISO

buiidmatrix
k := 2;

for i from 3 to n do (loop to put values in rows 3 to n)
forj from k to n do (loop to put values across each row)

r[ij] := r[i-2, j-1]

od
if (i mod 2) = 0 then k:=k+1 fi

od
the following will build array L; L[i] is the location of the last polynomial element in row iQ
j := 1;

for i from 1 to n1 do

LU] := i + nl; (last position is based on first plus degree)

LU+l] :=+ nl;

j :-j + 2 (go down two rows)

od

end

pivot

(check across row k for all zeros, this means row k-1 is gcd)

ck4gcd := true;

i:= k+l; (i is the index for loop)
while (i <= L[k]) and ck4gcd do [loop across row)

if r[k,i] <> 0 then ck4gcd false fi

i:=i+ 1 (increment loop index)

od

if ck4gcd then (need to zero matrix below row k and stop processing)

for i from k+-I tondo
for j from k to n do

r[i,k] := 0
od

od
k := n+ 1 (this stops main loop)

else (need to find a row s without a zero in column k to pivot up)

s :=k + I (start looking one row below k)
while r[s,k] = 0 do (loop while value in column k is zero)

s s + I
od
(move row s to row k with bubble pivot)

I5l

tempbool := trans[s]; (need to pivot tran with rows)

tempint := L[s];
forj from 1 to n do temprow[j] := r[sj] od;

for i from s by -1 to k + 1 do (this needs to step backwards (s is > k+l))
tran[ij := tran[i-I];

: ~~L[i] : ~-]

forj from I to n do r[ij] := r[i-i,j] od

L[k] := tempint;
forj from I to n do r[kj] := temprow] od;

fi
end

transform
(Find the last row s with a non-zero element in column k or the last row which has been

transformed (whichever is higher))

s:= k;

for i from k+i tondo

if (r[i,k] <> 0) or tran[i] then s:= i fi
od
(s is now the last row with a non-zero element in column k)
fori from k + 1 to s do {loop through all rows up to s)

forj from k + 1 to L[i] do (loop across row to last element)

if tran[k] and tran[i] and (d <> 1) then

(okay to divide as you transform row i)
r[ij] iquo(r[k,k] *r[ij] - r[i,k] * r[k,j],d)

{iquo(m,n) computes the integer quotient of m divided by n)

else
r[ij] r[k,k] *r[ij] - r[i,k] * r[kj]

fi
od;

r[i,k] 0; (need to zero column k below row k)
tran[i] true (row i has been transformed)

od

end

152

printmatrix
(this is dependent on the language used; print each row and column)

for i from I to n do

forj from 1 to n do

write r[i,j] (on one line)

od;
advance a line

od

end

The variables
1. r[ij] is a two dimensional matrix (array).

2. n1 = deg(pl(x)).

3. n = 2*n 1 is the length and width of the resultant (matrix).

4. L[i] is the location of the last element in row i; this is important because it is used so that we do

not update the zero elements of a row.

5. tran[i] is a one dimensional boolean (or logical) array; it is true when row i was transformed

during the last transformation; this is important since only transformed rows may be divided

by d.
6. d is the value which a transformed row may be divided by if all other factors allow for

division. In the Bareiss transform d is r[k-l,k-1].
7. k is the current transformation number and r[k,k] is the corner element where the next

transformation will begin.

8. tempint, tempbool and temprow are temporary variables used for pivoting.

9. ck4gcd is a boolean (logical) variable which will be true when row k is all zeros. This means

a greatest common divisor (gcd) has been found and further transformations are not

necessary.

Below we present an incomplete example where bubble pivoting is needed [3]; note that there is

a difference of 3 in the degrees of the members of the prs, as opposed to a difference of 2 in
Knuth's "classic" incomplete example.

Example. Let us find the polynomial remainder sequence of the polynomials pl(x) = 3x9 + 5x 8 +

7x 7 - 3x6 - 5x 5 -7x4 + 3x3 + 5x 2 + 7x - 2 and P2(x) = x8 - x5 - x2 - x - 1. This incomplete prs

example presents a variation of three in the degrees of its members (from 7 to 4) and it requires a

bubble pivot in the matrix-triangularization method; that is, a pivot will take place between rows that

are not adjacent.

153

The matrix-triangularization subresultantprs method

row degree

1> 3 5 7 -3 -5 -7 3 5 7 -2 0 0 0 0 0 0 0 0 (9)

2> 0 1 0 0 -1 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 (8)

3) 0 0 5 7 0 -5 -7 6 8 10 -2 0 0 0 0 0 0 0 (8)

4> 0 0 0 -7 0 0 7 -6 -13 -15 -3 0 0 0 0 0 0 0 (7)

5) 0 0 0 0 -49 0 0 79 23 19-55 14 0 0 0 0 0 0 (7)
#6) 0 0 0 0 0-343 0-24 501 73 93-413 98 0 0 0 0 0 (7)

#7) 0 0 0 0 0 0 -2401 -510 -1273 1637 -339 56 -2891 686 0 0 0 0 (7)

8> 0 0 0 0 0 0 0 2058 4459 7546 3430 2401 0 0 0 0 0 0 (4)

9) 0 0 0 0 0 0 0 0-1764-3822-6468-2940-2058 0 0 0 0 0 (4)

10) 0 0 0 0 0 0 0 0 0 1512 3276 5544 2520 1764 0 0 0 0 (4)

11) 0 0 0 0 0 0 0 0 0 0 25811-18982 4520-811-3024 0 0 0 (4)
12> 0 0 0 0 0 0 0 0 0 0 0-64205-77246-37568-28403 0 0 0 (3)

13) 0 0 0 0 0 0 0 0 0 0 0 0 2124693 449379 519299 128410 0 0 (3)

14> 0 0 0 0 0 0 0 0 0 0 0 0 0-- 10853 -1800739-2018639 0 0 (2)

15) 0 0 0 0 0 0 0 0 0 0 0 0 0 L -22909248 -24412716 10481706 0 (2)
16> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-4080113247620330 0 (1)
17) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00-398 4 81602264 (1)

18> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 682427564 (0)

Largest integer generated is 27843817119202448 [17 digits].

Pivoted row 6 during transformation 6. Stored row is:

6> 0 0 0 0 0 0 042 91 154 70 49 0 0 0 0 0 0 (4)

Pivoted row 7 during transformation 7. Stored row is:

7) 0 0 0 0 0 0 0294 637 1078 490 343 0 0 0 0 0 0 (4)

Bibliography

[1) Akritas, A.G.: A simple validity proof of the reduced prs algorithm. Computing 38,369-372,
1987.

[2] Akritas, A.G.: A new method for computing greatest common divisors and polynomial
remainder sequences. Numerische Mathernatik 52, 119-127, 1988.

[3] Akritas, A.G.: Elements of Computer Algebra with Applications. John Wiley, New York, in
press.

[4] Bareiss, E.H.: Sylvester's identity and multistep integer-preserving Gaussian elimination.
Mathematics of Computation 22, 565-578, 1968.

[5] Brown, W.S.: On Euclid's algorithm and the computation of polynomial greatest common

154

divisors. JACM 18, 476-504, 1971.

[6] Brown, W.S.: The subresultant prs algorithm. ACM Transactions On Mathematical Software
4, 237-249, 1978.

[7] Collins, G.E.: Subresultants and reduced polynomial remainder sequences. JACM 14,
128-142, 1967.

[8] Habicht, W.: Eine Verallgemeinerung des Sturmschen Wurzelziihlverfahrens. Commentarii
Mathematici Helvetici 21, 99-116, 1948.

[9] Laidacker, M.A.: Another theorem relating Sylvester's matrix and the greatest common
divisor. Mathematics Magazine 42, 126-128, 1969.

[10] Loos, R.: Generalized polynomial remainder sequences. In: Computer Algebra Symbolic and
Algebraic Computations. Ed. by B. Buchberger, G.E. Collins and R. Loos, Springer Verlag,
Wien, New York, 1982, Computing Supplement 4, 115-137.

[11] Sylvester, J.J.: On a theory of the syzygetic relations of two rational integral functions,
comprising an application to the theory of Sturm's functions, and that of the greatest
algebraical common measure. Philoshophical Transactions 143,407-548, 1853.

[12] Van Vleck, E. B.: On the determination of a series of Sturm's functions by the calculation of a
single determinant. Annals of Mathematics, Second Series, Vol. 1, 1-13, 1899-1900.

155

Computation of Fourier Transforms
on the Symmetric Group

Daniel Rockmore'

Harvard University
Department of Mathematics

Abstract Let G be a finite group and f any complex-valued function defined on G. If p
is a matrix representation of G then the Fourier transform of f at p is defined as the matrix

, aGf(S)P(s). Various applications demand the computation of the Fourier transforms of
f at all irreducible representations of G. Direct computation of all such Fourier transforms
requires on the order of I G 12 arithmetic operations.

In earlier work with Diaconis (IDRI) ideas have been presented for more efficient methods
of computing Fourier transforms. In particular, for Sn several algorithms were sketched. This
paper describes in detail a running implementation of one of these algorithms which has been
used effectively on a VAX11/750 and a SUN4.

1. Introduction

Let G be a finite group, f a complex-valued function defined on G, and let p be a matrix
representation of G. Then the Fourier transform of f with respect to p is defined to be the
matrix

1(p) = f(s)p(s).
aEG

Direct computation of f(p) for all irreducible representations p of G requires on the order
of I G I' arithmetic operations. In [DR] Diaconis and Rockmore take advantage of the group
structure to develop more efficient algorithms for this computation.

In brief, the basic idea is as follows. If p is an irreducible representation of G, consider p
restricted to some fixed subgroup H. As a representation of H, p will split into irreducible
representations. Thus, with respect to an appropriate basis, p (restricted to H) can be written
in block diagonal form with irreducible representations of H forming the blocks. The Fourier
transform at p can thus be built up as a direct sum of transforms over the subgroup. This
proces can be iterated. It yields a family of algorithms, all of which take fewer operations
than direct computation. When specialized to abelian groups this idea gives the well-known
Cooley-Tukey algorithm.

The ability to carry out this plan depends mainly on the existence of matrix representationsof G t! at split (ie. become block diagonal) as they are restricted down a tower of subgroups
of ? Sit.. is the case for the symmetric group S, and its natural tower of subgroups,

S. Q S,- .. = { identity}

'Supported by IBM and NSF Graduate Fellowships

where
Sk = r E S,, Ir(j) = j, k <j n}.

Here, at least two classes of representations discovered by Alfred Young, Young's semi-
normal and orthogonal representations, have this "splitting property". In addition, the way
in which irreducible representations of S, decompose when restricted down this tower (the
branching theorem) is also well-understood.

In the context of analyzing ranked data in an election, computation of all Fourier transforms
of an appropriately defined function on S, is required ((D11). This is an example of "spectral
analysis" for data on groups, one of a host of applications of noncommutative Fourier analysis
developed by Diaconis ((D2]).

Thus, interest in actually computing Fourier transforms over $,, has led to the imple-
mentation of algorithms on the computer. In [DR] several algorithms for computing Fourier
transforms over S,, are sketched. This paper discusses a running implementation of the algo-
rithm described in (DR] as using "complete branching and partial storage". Listings of the
working C code may be obtained upon request.

In the interest of being as self-contained as possible, in section 2 an extremely brief intro-
duction to the representation theory of the symmetric group is given. All of this and much
more may be found in James and Kerber's encyclopedic study (13K]). Section 3 contains the
main ideas that have chaped the program, describing the scheduling of the computation and
copying of the restricted transforms. In less detail this may also be found in (DR]. Section 4
contains a detailed sketch of the algorithm and and brief discussion of the main data structures.
Section 5 closes with some final remarks.

2. Background

A. Representations of the Symmetric Group

Let G be a finite group. Recall that a representation p of G is a map assigning matrices
to group elements in such a way that p(st) = p(s)p(t) for all s and t in G. Thus, p is a
homomorphism from G to GL(V) with V a vector space of dimension d, the dimension or
degree of p. If H is a subgroup of G then the restriction of p to H defines a representation of
H. This is denoted as p I. H. The representation is irreducible if and only if for any subspace
W C_ V, if p(s)W C W for all s E G then either W = {O or W = V. Serre ([S]) is an
accessible introduction to basic representation theory.

The representation theory of the symmetric group S,, has been studied extensively. James
and Kerber ([JK]) provide a thorough treatment of this subject. It is a fundamental fact that
the irreducible representations of 5,, are in a natural one-one correspondence with integer
partitions of n. Let A be a partition of n. This is usually written as A I- n Explicitly one
writes A -- (A ,..., k) where At + ... + Ak = n. The A, are the parts of A. It is assumed that
A > -A2 .>Ak > 0.

To each partition of n is associated its (Ferrers) diagram. Recall that this is a left-justified
arrangement of boxes with ,i boxes in the i h row. The diagram for the partition X is said to
be of shape A. For example, the diagram for A = (4,2,1) is

Much of the representation theory of S. involves the combinatorial properties of Ferrers
diagrams and their generalizations. In particular, a neat formulation of the manner in which
an irreducible representation p of Sn splits when restricted to S,_1 may be given in terms of
the associated diagrams.

157

Theorem (Branching theorem). Let \ be a partition of n and p, the corresponding irreducible
representation. Then p, restricted to S. 1 splits into the direct sum of irreducible represen-
tations p, where v runs over all partitions of n - 1 whose diagrams can be obtained from the
diagram of A by removal of a siagle box.

Example: Let A = (4,2,1). Then px restricted to 5s8 splits into the direct sum

P(3,2,1) E P(4,1,1) e P(4,2).

The splitting means that for ir E S,-1, p(r) can be written, perhaps after a change of
basis, in block diagonal form. It turns out that in two well-known bases, the orthogonal and
seminonnal forms discovered by Alfred Young, this block structure is automatic. Specifically,

Theorem (Proposition 4, IDRI) Let A be a partition of n and p, be the corresponding ir-
reducible matrix representation of S, in Young's seminormal (resp. orthogonal) form. Let
7r E S-i g Sn. Then

p(r) 0 p.,(7r) ..

00 ... P.400

where the 0k) are partitions of n - 1 determined by the branching theorem and the p,,,)(7r)
are again given in Young's seminormal (resp. orthogonal) form as defined for Sn- 1.

Applying this inductively, the analogous result holds true for 7r E Sk for any k, 1 <I k < n.
Kerber ([K]) gives a very readable account of the matrix constructions. There, formulas,

written in terms of functions defined on standard Young tableaux give closed form expressions
for the matrix representations for all the pairwise adjacent transpositions (j,j + 1). The
problem of building up all needed representations is addressed in section 4.

B. Fourier Transforms

Let f be a complex-valued function on a group G. The Fourier transform of f at a
representation p of G is defined as

1(p) = (2.1)
*EG

Let H _ G be any subgroup of index k with coset representatives {SI, ... ,sk} for G/H.
Then (2.1) may be rewritten as

k k

f(p) = 'p(si) E fi(h)p(h) = Ep(si)fi(p I H) (2.2)
i=1 hEH i=1

where f,(h) = f(sh).
Apply this to Sn. The n transpositions {(n, n), (n - 1, n),..., (1, n)} ((n, n) is the iden-

tity) are a set of coset representatives for S/Sn1 . Thus, for p a representation of Sn (2.2)
specializes to

f n

1(p) = 2 p(i,n) E fi(ir)p(7r).
i=1 ircS1-I

158

Iterating this procedure yields (for any k, 1 < k < n)

n n-1 k

i(p) = p(in,) E p(in.-1,n - 1)... 1i i...,-k.+I(P Sk)
in=l in-1= 1 ik-_1

where fin ...,k+,() = f((i, n)...(ik+l, k + 1)7r) for all ir E Sk.

3. The Main Idea

As described in [DR] the major source of savings in any implementation of an "efficient"
computation of Fourier transforms is the ability at all possible tim s to retrieve from memory
previously computed restricted transforms rather than recompute them. That is, let p be an
irreducible representation of G and let H be a subgroup of G. In general, p I H will no longer
be irreducible. Suppose that

p I H = 17h + ... + ql,

where the i~i are irreducible, although not necessarily distinct, representations of H. Thus, in
a suitable basis the matrix for p(h) for any h E H will have the form

',7(h) o ... o
(172(h) ... 0

0 0 ... 7,(h)

Consequently, (2.2) may be rewritten explicitly as

i,(77i) 0 ... 0
k (0 i(,2) ... 0p(s,) : :

0 0 i(,u)

As the irreducible representations p vary, the blocks fi(r) will occur repeatedly, both for
fixed p and different p's. They need only be calculated once and then stored, subsequent
computations simply retrieving them from memory. Iterating this idea through the most
"refined" tower (that is a tower of subgroups for which the sum of the indices is maximal)
yields impressive speedups. The Fourier transforms at the base of the tower are computed
directly.

Practical considerations however, may make it impossible to store all restricted trans-
forms. For example, consider the problem of computing Fourier transforms on S10. To store
all restricted transforms through Ss would require approximately 80 megabytes of memory
(assuming four bytes per floating point number). Clearly some compromises must be made.

To compute Fourier transforms on S, two modifications are made. First, only restrictions
as far as S5 are considered. Any Fourier transforms needed on S5 are computed directly.
Second, only the restrictions to S,-, will be stored throughout. In the case of n = 10
this brings the storage requirements down to a more manageable 13 megabytes. It is worth
noting that at the cost of an additional 13 megabytes all restricted transforms to S5 could
be precomputed and stored for quick retrieval at the last level of computation. Even without
storing all the restrictionj one may still take advantage "locally" of the existence of identical
blocks in the restrictions. This is perhaps best illustrated by an example.

Let f be a function defined on Si and consider the problem of computing the Fourier
transform of f at the representation P(7,3). The following "branching tree" represents the way

159

in which P(7,3) splits when restricted (recall the branching theorem). The k"h level shows the

splitting for P(7,3) restricted to So-k. The restrictions through S6 are shown in Figure 1.

[73]

[6,3] [7,2]

[5,3] [6,2] (6,2) [7,1]

[4,3] [5,21 (5,2) [6,1] (5,2) (6,1) (6,1) [71

[3,3] [4,2] (4,2) [5,1] (4,21{5,1) (5,1) [6] (4,2) 15,1) (5,1){6) (5,1) (61 (6)

Figure 1: Branching Tree for (7,3)

In the example at hand assume that both .i(P(,3)) and A(P(7,2)) must be computed for all
i, 1 < i < 10. Following the algorithm consider the restriction to S8 where P(6,2) occurs as a
direct summand (ie. block) in both restrictions (matrices). This need only be computed once,
and then copied immediately to the other block of the matrix. Consequently, no additional
work need be done to compute the block corresponding to this second occurence of p(6,2).

With this in mind, the notation in Figure 1 may now be explained. The partitions enclosed
by square brackets are representations which must be computed (the first occurences). Those
within parentheses will have the restricted transforms copied into them, while those inside
curly brackets will be ignored entirely. These are simply the restrictions which occur beneath
representations which are going to be copied at a higher level.

As the calculation of the Fourier transforms proceeds, for each partition of n such a
"branching tree" is generated. These provide "road maps" for the computation in the sense
described above. The above scenario requires that computations be scheduled in such a way
that all restrictions to a given subgroup be computed on the same pass. Thus, this tree
which guides the computation requires a little more connectivity than is usually given. The
branching trees are data structures of the following form:

pointer to level 0 partition data

pointer to level 1I - partition data F- partition data -- • partition data

Figure 2: Branching Tree Layout

That is, the tree is created as shown previously, but with additional pointers between
nodes on a given level, as well outside pointers to the first partition on each level. The
structure of the nodes of the tree is shown in Figure 3. There, "Partition" is an integer array
with zeroth element equal to the number of parts and the successive elements equal to the
parts, in decreasing order. "Dimension" is the dimension of the associated representation and
"compute' and "spread" are boolean flags indicating if -this restriction is to be computed (the
partitions enclosed in brackets in figure 1), or spread to (those enclosed in parentheses). If
both are false then nothing is done at the node (the partitions enclosed in curly brackets).
"ptr 1" through "ptr j" point to the restrictions of "partition".

160

[ariton

eon e

spread[ptrl1ptr21o. ptrj[

Figure 3: Branching Tree Node Structure

4. The Implementation

A. The Algorithm

Before giving a detailed sketch of the algorithm a few remarks explaining some of its
structure and notation are necessary.

Remark 1. The Fourier transforms are computed in lexicographically decreasing order
with respect to the associated partitions. Such scheduling has the property that at each
computation, at most one new restriction must be computed. Formally, a simple exercise in
manipulating diagrams gives the following proposition:

Proposition 1 Let A = (A.,..., A,), be a partition of n and p, be the corresponding repre-
sentation of S. Let R X be the set of all partitions of n - 1 that correspond to "restrictions" of
partitions that are lexicographically greater than \. (ie. R, is the set of all partitions of n - 1
that may be obtained by removing a single block from a Ferrers diagram of a partition strictly
greater than A.) Then,

i) If Al = A2 > 0 then all restrictions of \ are in R.
ii) If Al > A2 then exactly one new partition of n - 1 occurs in the restriction and it is

the lezicographically less than all those in RA.

Thus, while looping through the partitions in lexicographically decreasing order it is first
checked if the first two parts of the partition are equal. If so, all the restricted transforms
have been computed and they need only be retrieved in order to perform the calculation.
Otherwise, compute (in the manner sketched above) the "first" of the restrictions and retrieve
the others.

Remark 2. Restricted transforms {f,(ri7)}_ are stored in separate files indexed by the
partitions of n - 1. This seems to permit easy access and management. Upon computing a
given Fourier transform it is initially determined which representations occur in the restriction
to Sn-.1 Pointers are then directed to the corresponding files of precomputed restricted trans-
forms. These pointers are collected in a single array "branch-file-pointers[k". All of this is
performed by the subroutine "open-restrictions(pl, p2, b-array)". Here, "b-array" is an array
of partitions of n - 1 given by restricting the current representation of S. The parameters
pl and p2 indicate that partitions pl through p2 in this array have had their correponding
restricted transforms computed so that these files should be opened. After opening these
files, retrieval of the restrictions is done by simply moving through them sequentially. This
is carried out by the subroutine "Retrieve-Transform(i, j, m)" which returns f,(b-array[j]) in
the matrix m.

The algorithm which follows is in two parts, a "main" body and the subroutine "Compute-
Restriction". In the main body some variables are matrices, while others are integers. In any
particular case the context should make it it clear which is meant. "transp-array" is an array

161

of integers such that transp-arrayUi] = ij for k < j _< n denotes that as the recursion reaches
Sk-1 the Fourier transforms of fifi, are being computed.

Subroutines other than those mentioned above are

(a) Branch(A, number-of-branches, branches) - This takes a partition of k and returns in
the variable number-of-brancies the number of partitions of k - 1 to which it restricts, as well
as these subpartitions, in increasing order, in branches, a variable array of partitions.

(b) Make-branch-tree(root, A) - returns in root a pointer to the branching tree for the
partition A as described in section 2.

(c) Build-matrix(matrial, matrix2) - inserts matrix2 as a block on the diagonal of matrixl
in some specified position.

(d) Store-transform(i, A, restriction) - creates a file containing the restricted Fourier
transforms at the representation p,.

(e) Get-representation(A, i, matrix) - for A a partition of k returns in matrix the repre-
sentation p,(i k).

Compute-Restriction is called from the main body with the following parameters:

k: Indicates computation of the restriction to Sk.
result: A matrix variable returning the block matrix (p I Sk). (Note that this matrix

may only be partially filled.)

Additional subroutines called by Compute-restriction are

(a) Spread-the-blocks(matrix) - Using the branching tree, this subroutine takes as input a
block diagonal matrix and performs the appropriate copying of blocks as explained in section
2.

(b) Block-matrix-mult(matrix3, matrixl, matrix2) - matrixi is block diagonal and matrix2
can be block diagonal of the same size, or full, of size equal to the size of some block in matrixi.
In either case, the appropriate multiplication is performed and put in matrix3.

Note that the actual function f is not a parameter here. It is stored in a file in such a
way that as the computation proceeds, the values may be read out sequentially. Figure 4
gives a "recursive picture" of the data storage in the sense that the functions f, are stored in
consecutive blocks and within the block for each fi, the functions fij are stored similarly, etc.

fN l I N.
Figure 4: Data Storage

Algorithm for Computing Fourier Transforms on SN

main body:
FOR p = first representation of SN to the last DO

fourier-transform = 0;
branch(p, number-of-branches, branches);
IF first part of p= second part THEN

open-restrictions (, number-of-branches, branches);
first-repeat = 1;

ELSE /* first part is different from second*/
open-restrictions(2, number of branches, branches);
first-repeat - 2;
make-branch-tree (root, branches[/i);

162

i

FOR i = N DOWNTO 1 DO
transp[N] = i;
compute-transform(n - 1, branches[l], restriction);
store-transform(i, branches[i], restriction);
build-matrix(temp, restriction);
FOR j = first-repeat TO number-of-branches DO

retrieve (j(branchesj]))
build-matrix(temp, fi(branches[j]))

IF (i = N) THEN p(i,N) = identity;
ELSE get-representation(p, i, p(i, N));
fourier-transform = fourier-transform +p(i, N) * temp;

store-ft (fourier-transform);

Compute-Restriction(k, result)
IF k = 5 THEN

FOR p = the first partition at this level in the tree TO the last DO

IF the restriction at this partition is to be computed (ie. if
this is a first occurrence of the partition) THEN compute directly;

spread-the-blocks (result);
ELSE

result = 0;
FOR i = k DOWNTO I DO

transp-array[k] = i;
Compute-Restriction(k - 1, restriction);
FOR p = first partition in the restriction to Sk TO the last DO

get-representation(p, i, p(i, k));
block-matrix-mult(temp, p(i,k), restriction);
result = result + temp;

spread-the-blocks(result);

B. Generating the Representations

In order to compute the Fourier transforms for S. the algorithm requires that for each
k with 5 < k < n, the irreducible representations of the transpositions (j, k), 1 < j < k,
considered as elements of Sk, (as opposed to considering them as elements of S.) be available.
In the case of Young's orthogonal and seminormal forms, the representations for pairwise
adjacent transpositions (those of the form (k, k+ 1)) may be easily computed in terms of simple
functions defined on standard Young tableaux (see [K]). Unfortunately, no such expression is
known for the other transpositions. Thus, these must be built up from the pairwise adjacents
by successive conjugations. For each k, the necessary representations of elements of Sk are
stored in separate files whose exact form is explained in the following section. In the algorithm
which follows "make-pairwise-adj" is a subroutine which takes as a parameter an integer k
and consequently creates a file containing the irreducible representations of all the pairwise
adjacent transpositions (these are simply stored in blocks in lexicographically decreasing order
- with respect to partitions - and within each block in the order p(j - 1,j),..., p(l, 2)), and
returns in "n-of-reps" the number of representations (ie. partitions of k) generated. "p-a-t" is
an array of matrices such that each call to "get-p-a-t" (one occuring for each representation
p of Sk) fills p-a-t[j] with p(jj + 1) for all j between 1 and k - 1. "write-to-file" writes each
representation to a file in the format explained in section B. "conjugate(dest, ml, m2)" returns
in the matrix variable dest, the product ml * m2 * ml for matrix variables ml and m2. If ml

163

is a representation of a transposition then (mi)- 1 = ml, so this is conjugation.

FOR n = 6 to N DO
make-pairwise-adj (n , n-of.reps);

FOR j = 1 TO n-of-reps DO
get-p-a-t(p-a-t);

matrixl = p - a - t[n - 1];
FOR k = n- 2 DOWNTO I DO

write-to-file(matrixl);
conjugate(matrixl, p-a-t[k], matrixl);

write-to-file(matrixl) ;

Algorithm for Generating Pairwise Adjacent Representations

It is worth pointing out that only the irreducible representations for (k - 1, k) in Sk for
1 < k < n need be computed. Usi.g the branching property of these representations, the
other pairwise adjacents may be built up successively. This may be important when space is
at a premium. On the SUN4 and VAX1/750 this never became an issue. Also, note that if
A\ is a partition of k and ' the conjugate partition (the partition obtained by considering the
transpose of the Ferrers diagram of A) then the pairwise adjacent representations for p,, may
be obtained directly from those for px.

C. Storing The Representations

As the program executes, various restricted transforms are computed. Each of these
computations may require retrieving many distinct representations of the transpositions. To
rewind the file of representations for each retrieval would clearly be extrememly wasteful and
inefficient. Thus, a coherent scheme for keeping track of position in the file at any given mo-
ment, as well as "markers" to indicate relative positions of the other representations is useful.
By keeping a "bookmark" for each file and storing the representations between distinguishing
"bookends" it is possible to move directly from one representation to the next.

The bookmarks data structures consist of four objects. There is the actual physical marker,
a file pointer, pointing to the current position in a given file of representations. Also, the
corresponding partition of the current representation is stored as an integer array. Finally,
there are two additional integers, denoting the dimension of the representation and the current
transposition.

file pointer - representations
parion of

dimension Sn
transposiio-n1

Figure 5: Bookmark Structure

To compute Fourier transforms on S,, the representations for elements in S,, ..., S5 (recall
that restrictions are computed until S5 is reached where the computation is performed directly)
must be stored. The representations for each of the different symmetric groups are stored in
distinct files. Consequently, an array of bookmarks is kept, one for each group.

The structure of the files at which they point is dictated by the need for relative movement
within a file. Figure 6 shows the file structures for the representations of S6, ..., S,. The
object "reversed partition" is simply the original partition stored in reverse order. If p is
the representation corresponding to p then the data block for each p(i, k) is some d2 block of

164

floating point entries. The only difference in the file for S5 is that the representations of all
the group elements are stored.

*. partition dimension (n-I n) Q o o Qn) I dimension I partition
Figure 6: Representation File Structure

These blocks are stored in lexicographically decreasing order with respect to the partitions.
In brief, the bookmarks contain sufficient information to move the file pointer in either

direction directly to the end of a block of representations. The bookends then contain all the
necessary information for the new updating of the bookmark for the next block.

5. Concluding Remarks

Perhaps the single most important factor in the speed of the algorithm described here is
the exponent for matrix multiplication. That is, the value a such that two m by m matrices
can be multiplied in O(ma) steps. Currently, the lowest theoretical bound, due to Winograd
([W]), is a = 2.38. In practice a = 3 when the naive algorithm is used.

It is also worth pointing out that large numbers of matrix calculations for matrices with
floating point entries can result in the accumulation of serious rounding errors. Young's semi-
normal form gives a representation of S,, defined over the rational numbers (the orthogonal
form is real, but not rational). Consequently, if the spectral analysis is to be carried out on a
rational-valued function rounding errors may be avoided critirely by performing rational arith-
metic. Indeed, even if f is not rational such methods may substantially lessen the cumulative
error.

Depending on the storage capacity of the computing environment these ideas can be am-
plified by computing and storing the restrictions to smaller subgroups.

Acknowledgements

Thanks to David Fry for his useful suggestions and help with the diagrams.

References

[D1j Diaconis, P. (1987). Spectral analysis for ranked data. To appear, A,'n. Statist

(D21 Diaconis, P. (1988). Group Representations in Probability and Statistics. Institute of
Mathematical Statistics, Hayward, CA.

[DR] Diaconis, P. and Rockmore, D. (1988). Efficient computation of Fourier transforms on
finite groups, To appear.

[JK] James, G. D. and Kerber, A. (1981). The Representation Theory of the Symmetric
Group2. Addison-Wesley, Reading, Mass.

(K] Kerber, A. (1971). Representations of Permutation Groups I. Lecture Notes in Math.
240. Springer-Verlag, Berlin.

[S] Serre, J.P. (1977). Linear Representations of Finite Groups. Springer-Verlag, New York.

[W] Winograd, S. (1978). On computing the discrete Fourier transform. Math. Comp. 32,
175-199.

165

Integration in Finite Terms
and Simplification with Dilogarithms:

A Progress Report 1

Jamil Baddoura

Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract. In this eztended abstract, we report on a new theorem that generalizes Liouville's
theorem on integrat;on in finite terms. The new theorem allows dilogarithms to occur in the
integral in addition to elementary functions. The proof is based on two identities, for the dilog-
arithm, that characterize all the possible algebraic relations among dilogarithms of functions
that are built up from the rational functions by taking transcendental exponentials, diloga-
rithms, and logarithms. We report also on a generalization of Risch's decision procdure for
integrating elementary transcendental functions to include dilogarithms and elementary func-
tions in the integral.

1. Introduction

In 1967, M. Rosenlicht [9] published an algebraic proof of Liouville's theorem on the
problem of integration in finite terms with elementary functions, based on the notions of
differential algebra. R. Risch [8] was able to sharpen it and obtain an algorithm for calculating
the integral of an elementary transcendental function. In 1972, J. Moses [6] started discussing
the problem of extending Liouville's and Risch's result to include non-elementary functions in
the integrand as well as in the integral. He asked whether a given expression has an integral
within a class of expressions of the form (F(V)), where F is a given special function and
(V) is a finite set of functions lying in the ground field. Singer, Saunders, and Caviness 1111
proved an extension of Liouville's theorem allowing logarithmic integrals and error functions
to occur in the integral. Their result allowed Cherry [21 to obtain two decision procedures for
expressing integrals of transcendental elementary functions in terms of those special functions.
The dilogarithm is, however, more complex than logarithmic integrals and error functions, in
the sense that if an integrand has an integral which can be expressed using dilogarithms, these
can have derivatives which contain logarithms transcendental over the field of the integrand.
Moreover, the logarithms in the derivatives of dilogarithms may be algebraically independent
even though the dilogarithms and these logarithms are algebraically dependent.

R. Coleman [3] produced an analytic characterization of the identities of the dilogarithm
for rational functions. We show that two identities of the dilogarithm, in addition to the

'This research has been supported, in part, by the Air Force Office of Scientific Research, Grant No. AFOSR-
85-0264.

identities among primitives and the identities among exponentials, are required to generate
all algebraic relations among dilogarithms and logarithms of functions built up from the ratio-
nal functions by taking transcendental exponentials, logarithms, and dilogarithms. Our proof
uses Ostrowski's theorem [71 in several places. Given these two identities, we generalize Liou-
ville's theorem to include dilogarithms in the integral, in addition to elementary functions. As
expected, dilogarithms have close relations with the logarithms in the way they appear in the
integral. In addition, we generalize Risch's decision procedure for integrating transcendental
elementary functions allowing dilogarithms to occur in the integral.

2. Dilogarithmlic-Elementary Extensions

Let k be a differential field of characteristic zero. The derivation operator of k into itself
will be denoted by', that is, the derivative of an element x in k is x'. The subfield of constants
of k will be denoted by C. A differential field extension F of k is said to be dilogarithic-
elementary over k if F can be resolved into a tower:

F -- R. ;2 F._ 2_ ... ;_2F, QFo= k

such that F, = F-l(0!, 8j), where, for each i, 1 _< i < n, one of the following holds,

(i) OV = 4'/4 for some nonzero 0 in Fi-, which we write O = log 4. We say that Oi is
logarithmic over F,-1.

(ii) 9} G'8 for some 0 in F- 1, which we write 0, = exp 4. We call O exponential over Fi-1 .

(iii) 0 = -(S'/O)u, where OeF _- - {O, 1}, and u is such that u' = (1 - 0)'/(1 - 0). In this
case, we write Oi = 4(0) and call O dilogarithmic over F- 1 . We note, in this case, that
8i is defined up to the addition of a constant multiple of a logarithm over F-I since u is
defined up to a constant. We don't assume, however, that u lies in F- 1 .

(iv) 0i is algebraic over F- 1 .

Roughly speaking, condition (iii) means that 0, is the composition of the function 4' with

the dilogarithmic function e2(x) defined as:

t2(X) = 0 log(i - t)f0Zt

If f is an element of k and F is some dilogarithmic-elementary extension of k, we say that f
has an integral in F if there exists an element g in F whose derivative is f. We say then that
f has a dilogarithmic-elementary integral.

A differential field extension F of k is said to be transcendental-dilogarithmi-.-elementary

over k if F can be resolved into a tower:

F = . ;? F._I ;2.. F, _2 F0 = k

such that F = Fj- (0!, 6j), where, for each i, 1 _< i < Y, one of the following holds,

(i) j = 4'/4 for some nonzero 0 in F,_4, which we write 0/ = log 0. We say that 0j is
logarithmic over F_1 .

167

(ii) Oi = 4)'O for some &F)_1, and qS transcendental over F-i. We write O = exp4.

(iii) 0t = -(O9/O)u, where OcFii - {0, 1), and u is such that u' = (1 - 0)'/(1 - 4). In this

case, we write ei = t2().

Let f be an element of k. We say that f has a transcendental-dilogarithmic-element integral
iV" there exists a transcendental-dilogarithmic-elementary extension F of k and an element g
in F such that the derivative of g is equal to f.

Our objective is to determine the structure of the integral of a function f when it has a
dilogarithmic-elementary integral.

3. An Extension of Liouville's Theorem

Let k be a differential of characteristic zero and K be a differential field extension of k

such that K = k(t, u, v). We say that t = D(O) if 0 is an element of k - {0,1} and:

1=0' 1(1-0)'
2 4'u + 2 (1 --) V

where u' = (1 - 0)'/(1 - 4) and v' = 0'/0. From this definition, it follows that t is defined
up to the addition of a linear combination of log 4 and log(1 - ,6) with constant coefficients.
Informally, t is equal to:

1
t2(0) + -log log(1 -4)

2

This motivates considering the dilogarithm 12 and the associated function D as defined
mod the vector space generated by constant multiples of logarithms over k. We denote from
now this vector space by Mk for any differential field k. So, if WCMk, then there exist constants
c,. .. cn and ul," .,u, such that ui,1 < i 5 n, is logarithmic over k for all i, and:

n
W - ii
w=

One of the key foundations for this work is the following proposition (see [1]), which produces
a differential algebraic characterization of the functional identities of the dilogarithm.

Proposition 5.1:

(a) If k is a differential field of characteristic zero and f an element in k - {0, 1}, then:

D(-) - -D(f) mod Mk

(b) Let k be as above and let 0 be transcendental over k with k(O) being a differential field.
Let f(0)ck(O) and K be the splitting field of f(O) and 1 - f(O). We define, if a is a zero
or a pole of f(O),ordj(O) to be the multiplicity of (0 - a). Then, there exists fock such
that:

D(f(o)) =- D(fo) + Eordb(1 - f(O))ord(fy(0))D(0-a) mod MK($)
a,b

where a and b are the zeros and poles of !(0) and (1 - f(0)), respectively.

168

(c) Any identity for the dilogarithm can be reduced to "instances" of (a) and (b).

Example: Let k = C(z), where z is transcendental over C and z' = 1, and C is the field of
complex numbers. Applying the previous proposition to f(z) = z2, f(z) z, and f(z) =-z,
respectively, yields

D (Z2) =2D(-) + 2D(-) mod Mc(,)
Z z

D(z) = D(zz) mod MC(.-)

and:

D(-z) = D(Z) mod Mc(,)

So, D(z2) = 2D(z) + 2D(-z) mod Mc(,), which implies that:

(z2) ~ log z 2 log(1 - z2)

2(12(z) + t2(-z) + log z log(1 - z) + !log(-z) log(1 + z)) mod Mc(.)

and we obtain 1(zl) = 24(z) + 2 2(-z) mod Mc(,). This is a well known identity of the
dilogarithm.

Our main theorem is a generalization of Liouville's theorem allowing dilogarithms to appear
in the integral in addition to elementary functions. We proved the following theorem (see [1)).

Theorem 5.1: Let k be a differential field of characteristic zero, which is a Liouville exten-
sion of the subfield of constants assumed algebraically closed. Let f be an element in k and
suppose that f has a transcendental-dilogarithmic-elementary integral. Then:

m n

Jf =g+ _siwi+3djv (1)
i=I j=1

where n and m are positive integers, gek, sick for all i, 1 < i < m, wi is logarithmic for all
i,1 i < m,d i is a constant for all j, 1 _< j _< n, and vi = D(il, where qcdk - {0, 1} for all
j, 1 :5 j _< n. We observed that, although v does not in general belong to k, it can even be
transcendental over k, as is illustrated in the following example.

Example: I k k be any differential field of characteristic zero. Assume that 0 is primitive
and transcende.,tal over k. Let p(O) and q(O) be two irreducible polynomials over k such that
degp > degq 6 0.

We consider the differential field K = k(0)(0, 02), where 01 and 02 are such that:

0= p1(0) an , q1(0)p'CO) q

It is immediate that 01 and 0 2 are algebraically independent over k(0). It is also clear that, if
03 is such that:

(PCO) + q(O))'
p(0)+q(O)

169

then 4 3 is transcendental over K. Consider the function:

f = (q (p+q q),)'
2 q (p+(q) 1 2 (p+q) p

+p+#

f cK, and we can check that:

[D(zP) + '0+ 2)0s] =ff modMK

but (D(-p/q))' is transcendental over K since 40s is.

4. The Decision Procedure

In addition to the previous theorem and the identities of the dilogarithm described in
Proposition 3.1, the decision procedure for dilogarithms makes use of the notions of a factored
transcendental elementary field and its rank as defined in 12). We have the following theorem
(see Il1).

Theorem 4.1: Let C(z) be a differential field of characteristic zero, where z is transcendental
over C, a solution to z' = 1, and C is an algebraically closed subfield of constants.

Let k = C(zl,Oi, . ,O,),n > 0, be a transcendental elementary extension of C(z) that is
factored. Given f in k, one can decide in a finite number of steps if f has a transcendental-
dilogarithmic-elementary integral and if so determine g, w , sj, dj,4j, and vj satisfying (3.1).

Example: Let k = C(z, logz, e'). Let 0 = e-, and:

I1 1 - 2e2s 1 e 2z

f(Z) = 2(z -) log(-)dc

(since log(eiz/z),k). Let us try to evaluate f f(z)dz. In the course of the algorithm, we need
to determine if:

g(z) ez)

has finite decomposition of the form:

g L p P-_Ap

where A is a finite set of positive integers, Cp is a constant, and ApcC(z). In our case:

g(z) = ---

So:

f l1l-2e = 1 e2=.

1(1_ -)log(s)dz

I 6 g Z eUz (e~zlog(-) log(-) + D ()

170

5. Conclusion

We believe that the results presented here can be extended to other special functions, such
a.9 the trilogarithm, if we can characterize its functional identities as we have done with the
dilogarithm. However, it appears that the identities of the trilogarithm are fundamentally
different from those of the dilogarithm and much harder to find. We hope that the results
obtained here will spur further research for higher polylogarithms.

Acknowledgements

We would like to thank Joel Moses, Harold Stark, and Michael Singer for helpful discus-
sions.

Bibliography

[1] J. Baddoura: Ph.D. Thesis, M.I.T., CaL ' • j ' MA in progress.

[21 G. Cherry: Ph.D. Thesis, University of Dela-,i. -, 1983.

[3] R. Coleman: Dilogarithms, Regulators and p-adic L-functions, Inventiones Mathematicae,
69, 1982, 171-208.

[41 E. Kolchin: Algebraic Groups and Algebraic Independence, Amer. J. of Math., 90, 1968,
1151-1164.

[51 J. Moses: Symbolic Integration, the Stormy Decade, Comm. of the ACM, 14, 1971,
548-560.

161 J. Moses: Towards a General Theory of Special Functions, Comm. of the ACM, 15, 1972,
550-554.

[71 A. Ostrowski: Sur les Relations Alg~briques Entre les Integrales Ind6finies, Acta Mathe-
matica, 78, 1946, 315-318.

181 R. Risch: The Problem of Integration in Finite Terms, Trans. Amer. Math. Soc.. 139,
1969, 167-189.

[9) M. Rosenlicht: On Liouville's Theorem of Elementary Functions, Pacific J. Math., 65,
1976, 485-492.

[101 M. Rosenlicht and M. F. Singer: On Elementary, Generalized Elementary and Liouvil-
lian Extension Fields, in Contribution to Algebra, Bass, Cassidy, and Kovacic (eds.),
Academic Press, New York, 1977, 329-342.

[11] M. Singer, B. Saunders, and B. F. Caviness: An Extension of Liouville's Theorem on
Integration in Finite Terms, SIAM J. on Computing, 1985, 966-990.

171

Why Integration is Hard

H. James Hoover
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada, T6G 2H1

Abstract. This paper is a brief introduction to how the techniques of computational
complexity can be applied to real analysis-integration in particular. We investigate how
the difficulty of computing a function relates to the difficulty of computing its integral.
Our comments are directed to an audience that is more familiar with traditional analysis
and numerical methods than it is with complexity theory.

0 Introduction

Here are two "obvious facts" about symbolic and numerical integration: (1) all polynomi-
als are easy to evaluate and to integrate; and (2) there are many real functions that art;
easy to compute but that are hard to integrate. Why is this so?

Our use of the word integrate incorporates problem solving of the following kinds: You
are given a specific continuous real function f and asked to compute the real number
a = fo f(x)dx. Or, you are given a specific continuous real function f and asked to
compute the function g(y) = fo f(x)dx. Or, finally, you are given an arbitrary continuous
real function f and asked to compute the operator I(f) = fJ f(X)dx.

Intuitively, the more we know about the structure of a real function f the easier it
is to integrate. For example, the polynomial anxn + ... + a1x + ao is fully described by
its coefficients, and so it can be both computed and integrated by simple term-by-term
methods. In contrast, consider the the function f that is zero everywhere except for a
unit height and width peak centered at some point ao. Knowing the structure of f, it is
certainly easy to compute both f and its indefinite integral-and with about the same
amount of effort. But suppose that we feed f into a numerical integration algorithm that
is ignorant of f, and can only take samples of it. Since the algorithm cannot know where
the peak of f is located, integrating to an accuracy of 1 over an interval of length 2' will
require about 21 samples-substantially more work than just evaluating f.

Since merely hiding structural information can make even a simple function hard to
integrate, it seems fairer to ask the following questio,: Suppose that we have access to
all of the structural information used to evaluate function f. How does the difficulty of
computing f relate to the difficulty of integrating f F

We will approach this problem from the perspective of a complexity theorist and ask
what can be computed by machine, and how efficiently. To do this we must ask some very
basic questions:

" What does it mean to compute a real number?
" What does it mean to compute a real function?
" What does it mean to compute an operator on a real function?
* What does it mean to present a real function to an operator?

* What do easy and hard mean for the above?
This somewhat unorthodox approach, at least by numerical and functional analysis stan-
dards, leads to a very simple characterization of the easy to compute real functions, and
to the surprising conclusion that even when f is simply a polynomial the above three
integration problems are still hard.

1 What is a real number?

For computer scientists, computation is almost always symbolic, and by its very nature
must deal with objects that can be described by collections of symbols from some finite
alphabet. But a real number is not in general a finite object. For example, unlike an
arbitrary integer, we cannot simply write down an arbitrary real number as a string
of decimal digits. So what approach can we take to represent and compute with real
numbers?

We could write down an equation using a finite number of symbols, such as x2 -2 = 0,
and say that this represents the real number x that is the positive solution to the equation.

Or, we could write down a program P such as

P: (e)o 4-- 1
for i l- 1 to o do

(,-.- + 11i!
end for

which "computes" e in the sense that each (e),, is closer to e than the one before. (In fact,
for n > 8, le - (e)Il < 2-n.)

Although both of these "represent" a real number in some sense, it is rather difficult to
do an actual computation with them. For example, how do you compute x + e given the
representations above? We cannot just "add" the equation z 2 - 2 = 0 to the program P.
Some additional structure is required of the representations if we hope to describe even
basic arithmetic operations on reals. Without some structure, a procedure that added
two reals would be required to accept and interpret almost any set of symbols that could
describe a real number. Yet we must also ensure that our structural constraints do not
overly limit the kinds of reals that we can compute.

One compromise solution is to distinguish between the manner in which the real is
defined or computed, and the manner in which it is presented to the outside world, and
then to standardize the interface between the two. The main constraint on the standard
interface is that it must accept a finite string of symbols as input, and deliver a finite
string of symbols as output. This is required so that we can manipulate the real in
a computational context. Other than this, the interface can be arbitrary, keeping in
mind that a poor choice of interface can cause massive technical problems. Behind this
interface we allow any kind of computation that we can imagine, including uncomputable
computations.

The typical kind of interface that we use takes a natural number n, and delivers an
approximation (x)n to the real x that is being represented. In other words, the interface
delivers a sequence of n-th approximations to the real being represented. (This notion
appears in Turing [Tu36,Tu37], in Grzegorczyk [Gr57, and in Bishop [Bi67].)

Definition 1.1 Let x be a real number. The notation (x), for n >_ 0, stands for any
rational number such that ix - (X)nl < 2-n. We say that (x)n is an n-th approximation
to x, and that a sequence {(X)n} of such approximations represents x.

173

So if we choose to define the real x as the positive solution to x2 - 2 = 0, then
a representation of x could be computed by a procedure that solves such equations to
arbitrary accuracy using rational arithmetic, and the interface to x would be a function
(x), that on input n delivers a rational value such that IV2 - (x),I < 2n.

So much for representing reals. What about computation? The manner in which we
obtain each representation dictates whether we say that the real is easy to compute, hard
to compute, or not even computable at all. What do we mean by "compute", and by
"easy" and "hard"?

Computation is always done in the context of some given model of abstract machine.
Each computation is described as a program, for the abstract machine, that takes inputs
and produces outputs. The model of computation also specifies what kinds of resources are
consumed by a computation so that we can assign a cost to each particular computation
on each specific input. These costs are typically time, in terms of number of basic steps, or
space, in terms of number of atomic memory cells used by the machine during the course
of the computation. The usual model of computation is the Turing machine, and the cost
measure that interests us is time.

We specify the complexity of a computation by describing how the cost of the com-
putation varies as a function of the size of the input being fed into the computation. In
general, the cost will increase with increasing input length, and we are interested in the
asymptotic rate at which the cost function grows. A computation is considered easy, or
feasible, if its cost C as a function of input size n is bounded by some polynomial in n.
That is, if there is a k such that for n > 1, C(n) = O(nk). This is commonly denoted by
C(n) = no(1). Thus the natural notion of feasibility for real numbers is that computing n
bits of an approximation to real number x should only require time n°o().

Definition 1.2 Real number x is a feasible real if there is a Turing machine that, on
input of natural number n, outputs (X)n in time no().

Note that there are non-feasible reals whose n-bit approximations take 0(2 n) time to
compute, and there are even uncomputable reals. However most kinds of reals that we
use daily, such as 7r, e, and the roots of polynomials with feasible real coefficients, are
feasible.

2 What is a real function?

If real numbers are considered to be convergent sequences of rationals, then a real function
can be considered to be something that takes a sequence of rationals as input, and produces
a sequence of rationals as output.

Consider any continuous real function f defined on (-oo, +oo). One possible way of
computing f on input x would be by a procedure that takes two inputs: a natural number
n, and a representation of x. The procedure would read in n, and establish the interface
to the representation of x. It would then make subroutine calls to obtain approximations
(x), to the input, do some computation, possibly make more subroutine calls, and then
finally output (f(x))n.

Note how we let the function look at its argument via only the representation interface,
and require the function to produce its output in the form of a real representation, thus
separating the task of computing the function itself from the problem of computing the
particular input. This separation is necessary if we want to talk about the intrinsic
difficulty of computing the function f. We could not do this if the function were allowed to
cross the input interface and examine how the input was computed, for then the complexity

174

of the function would be sensitive to the manner in which its input was obtained, not just
to the value of the input. (There are theories of analysis that do allow this kind of activity
and they can lead to very strange results-for example, continuous functions that are not
bounded on closed intervals. tAbS0].)

What sort of computation model should we allow for functions? There are two main
possibilities. One is to use an unstructured model, such as the Turing machine, that is
permitted to manipulate the actual symbols of its input in any way whatsoever. In such a
model, the computation has access to the actual bits of the rational numbers representing
the input, and can manipulate them as it sees fit to produce the bits of the function's
output. (This is the method chosen by Grzegorczyk [Gr57] and by Ko and Friedman
JKF82].)

The other model is more structured, and requires the inputs to be handled as atomic
units, and permits only restricted operations on the input such as addition, subtraction,
multiplication, and division. This is the model implicit in the study of approximation
theory.

Historically the unstructured computational model came first, and if we were only
interested in computing functions, then either alternative would be acceptable, although
it is not clear that the two models have equivalent power. But we are ultimately also
interested in computing operators such as integration, and in describing the computation
of an operator we face the same problem that we did for functions with respect to their
inputs-the need for standardization in order to avoid arbitrarily general descriptions of
the functions being operated on. What form can this standardization take?

Recall that we want our operators to know as much about the structure of the function
they are operating on as is used in computing the function itself. That is, we want to
take a standard description of a function, feed it to an operator, and then let the operator
examine the function. In this case, the unstructured model seems to be too complex
to deal with. For example, suppose that one wishes to compute fo f(x)dx for arbitrary
functions f, where f is presented as a Turing machine program that potentially does some
kind of obscure bit manipulations on its input in order to obtain an output value. We can
imagine writing the integration operator so that it examines the Turing machine program
directly. It deduces information about the function being computed, which it then uses to
compute the integral in a cleverer way than by just taking samples of f and integrating
numerically. But this is not too likely, and for arbitrary f is actually impossible. However,
if f is presented as a polynomial represented in some standard form, then the structure
in the description of f can be exploited to efficiently symbolically integrate f.

One structured approach to computing a real function is to use arithmetic circuits.
These circuits do nothing but arithmetic operations, and are the natural e:,tension to
the traditional notions of approximation by polynomials and rational functions [BB86j.
Each arithmetic circuit over R is an acyclic network of gates where the edges carry real
numbers and the gates perform the operations +, -, x, .- I (inverse) or deliver rational
constants. A computation by such a circuit is the obvious one, with the circuit computing
a rational function over R, and with the proviso that the computation is undefined when
any inverse gate has a zero input. These circuits and their extensions to general fields
have been extensively investigated ([vzG86], fvzGS861) and are one of the main models of
parallel algebraic complexity.

Figure 2.1 is an example of an arithmetic circuit a that computes the polynomial
a(x) = x - 1 in a rather stupid way. Note how the output of the circuit is undefincd when
the input is -1.

How do we use arithmetic circuits to compute arbitrary continuous real functions? Just
as we use sequences of rationals to approximate a real number, we can use a sequence, or

175

+

I <-

y

Figure 2.1: Arithmetic circuit a(X) = x - 1.

family of arithmetic circuits to approximate a real function. For example, each member
an of the family {an} could approximate f within 2-n. But for many f no single rational
function can approximate f within 2-n over the entire interval (-oo, +oo). For example,
the function sin(x) has an infinite number of zeroes, so any rational function P(x)/Q(x)
that is within 2-n, n > 2, of sin(x) must also have an infinite number of zeroes, which
implies that P(x) is either constant or has infinite degree. So any approximating family
of rational functions will in general require an index that specifies the range over which
the approximation works.

For notational simplicity, we use one index to indicate both the accuracy of approxi-
mation and the range over which it works. Each circuit an of the approximating family
{an} for f takes as input a real z E [-2n,2'], and computes a real output, denoted by
an(x), which approximates f(x). Pictorially we have the following situation, where we
slightly abuse the notation (f(X))n and allow it to denote real values, not just rational
ones.

x- Fa -(fx)

Note that if x is a rational number, then the arithmetic nature of the gates in a, ensure
that a,(x) will also be a rational number.

We can now define what it means to compute a real function with arithmetic circuits.

Definition 2.1 Let {a,} be a family of arithmetic circuits over R, and let f be a real
function. Suppose that for all n > 0, circuit a, satisfies the relation that if X E [-2",2"]
then If(x) - an(X)I :5 2-n. Then we say that the family {a} of arithmetic circuits sup-
approximates real function f.

This partly addresses the structure issue for functions. What remains is to develop an
appropriate notion of cost for the computations performed by arithmetic circuits.

176

3 Feasible real functions

Arithmetic circuits are in one sense a model of an idealized analog computer, and we
could confine our study to those computations which are feasible on analog computers-
whatever the notion of feasible means for such machines. But in practice, we must perform
our computations on digital computers, and so we want any notion of a feasible arithmetic
circuit computation to correspond to our usual notion of a feasible computation on a
Turing machine. Knowing this, we can work primarily in the domain of feasible arithmetic
circuits, being confident that our results remain feasible in the world of Turing machines.
To establish this correspondence we must do two things.

First, we must be able to actually produce the description of each arithmetic circuit of
the family in a reasonable time. In order to ensure this we require the circuits to satisfy
a uniformity condition. There are many possible precise uniformity conditions that one
can use, but for our purposes the following informal definition will suffice:

Definition 3.1 An arithmetic circuit family {a,} is log-space uniform if a description
of the connection pattern, gate types, and values of the constant gates (encoded in binary)
for circuit a, can be produced in space O(log n) on a deterministic Turing machine.

Note that we need uniformity only if we care about constructing the circuits, other-
wise we can view them like reals, with an being a function that magically delivers the
description of the n-th member of the family.

Secondly, once we have circuit a, we actually want to use it to compute an approx-
imation to f at some specific point x. Since we lack computing devices that actually
manipulate real numbers we must view a, as specifying a series of operations that can
only be approximated using rational numbers. But since an is itself just an approximation
to f, a sufficiently accurate simulation of a, on input x will yield a good approximation
to f(x).

These rational computations must be feasible in the usual sense-a simulated com-
putation of a, on x must require at most time no). This can be achieved with two
constraints on the circuit family. One is that an must perform only no(') operations, that
is, to have a polynomial number of gates, which we denote by size(an) = n° 0).

The other condition is that the rational numbers involved in the simulation of a, do
not require more than a polynomial number of bits to represent. Otherwise, a simulation
of a, cannot possibly remain feasible. This amounts to bounding the magnitude of the
numbers involved in the simulation by 2n°o(). For example, if no intermediate value ever
has a magnitude bigger than 2', then no non-zero intermediate value will ever have a
magnitude smaller than 2-1, and no more than about 2n bits will ever be required to
represent an intermediate value.

One way of keeping the numbers short is to restrict an to have degree n°0() . This
implicitly limits the magnitude of the internal values to 2no(), and is the typical limit used
in algebraic complexity theory. But there are many functions that are easy to compute,
yet have high degree, so such a limit would overly restrict the kind of functions we could
compute. Instead, we directly restrict the magnitude of the values involved in the circuit.

Definition 3.2 Let {a,} be an arithmetic circuit family over R, and let a (x) denote the
output value of gate v of a, on input x. The magnitude of circuit a,, denoted mag(a,)
is the quantity

mag(an) _ max nax IaX()I}
Ea. [-2,2

177

That is, mag(crn) is the absolute value of the largest output from any gate of a, on any
input x E [-2n, 2"].

Combining the consideration of polynomial size with feasible magnitude we get a class
of circuits such that each member can be simulated by a polynomial time Turing machine.

Definition 3.3 A family {a,} of arithmetic circuits over R is feasible-size-magnitude
if size(an) = nO(M) and mag(a,) = 2 °' .

Then by adding uniformity, we can define a sufficient condition for a circuit family to
be feasible, and thus can define the notion of feasible real function in a way that captures
our intuit.ons about feasibility.

Definition 3.4 A real function is feasible if it can be sup-approximated by a feasible-
size-magnitude family of uniform arithmetic circuits.

The fact that a feasible-size-magnitude circuit family can be efficiently approximated
by a Turing machine is expressed in the following proposition [Ho87.

Proposition 3.5 If a real function f is feasible, then there is a function U from naturals
to naturals, with p(n) = n°(1), and a Turing machine M, such that for all natural n, and
all reals x E [-2n, 2n], if n and rational (x)(,,) are input to M, then M outputs rational
(f(x)),, in time no(').

So to approximate the output of a feasible-size-magnitude arithmetic circuit an(x) to n
bits of precision requires only n°(') bits of precision in the input x.

This proposition has the following surprising, and non-trivial converse [Ho87,Ho88].

Proposition 3.6 Let f be a continuous real function. Suppose that there is a Turing
machine M and a function p from naturals to naturals, with p(n) = no() , such that for
all natural n, and all reals x E [-2n, 2"], if n and rational) are input to M, then M
outputs rational (f(x)), in time n°(o). Then f is a feasible real function.

Thus there is an equivalence between the unstructured computation off and its struc-
tured computation-if a Turing machine can compute the function f feasibly then we can
find a feasible-size-magnitude arithmetic circuit family that computes the function f.

This equivalence can be exploited to obtain a feasible version of the Weierstrass ap-
proximation theorem that every continuous function can, over a closed interval, be ap-
proximated arbitrarily closely by polynomials.

Theorem 3.7 A real function f is feasible iff f can be sup-approximated by a uniform
family of feasible-size-magnitude arithmetic circuits that do not contain any inverse gates.

In other words, every real function that i3 feasible under the conventional Turing ma-
chine complexity notions is in fact computable by a family of feasible polynomials described
by arithmetic circuits that have no inverse gates but only contain +, -, x, and constant
gates. Thus we have a very simple structural characterization of the easy to compute real
functions, and we can now ask if these functions can be integrated easily. (It is worth re-
marking that these results have analogues in the domain of space-bounded computation.)

178

4 Integration is Hard

Returning at last to our original motivation, we can now ask: Suppose that f is a feasible
real function. Is the indefinite integral g(y) = fo" f(x)dx also a feasible real function?

Note that we do not ask if there is in general an efficient way to compute the integration
operator, but merely if an easy to compute function has an easy to compute integral.

Although there is no definitive answer to this question, results by Ko [KF82 and
Friedman [Fr84J indicate that it is probably as hard as other classical hard problems in
complexity theory. How does one go about classifying such a problem as easy or hard?

In the usual practice of complexity theory, problems are classified by placing them into
complexity classes according to their mutual difficulty on various models of computation.
The most familiar classes are P, the class of problems with polynomial time solutions
on Turing machines; NP, the class of search problems that have polynomial time solu-
tions on nondeterministic Turing machines; and #P (pronounced "sharp p") the class of
enumeration problems whose number of solutions can be counted in polynomial time by
nondeterministic counting Turing machines.

A problem X is considered to characterize a class if it is complete, that is, if the solution
of any problem in the class can be reduced to the solution of problem X. The problems
in P are considered to be easy, and the complete problems in NP and #P are considered
to be hard. The interested reader can refer to [GJ79] for an excellent introduction to this
material, but the basic issue is that we do not know how to solve NP or #P problems
without resorting to an exhaustive search of an exponential size space.

In order to use the tools of complexity theory to classify the integration problem we
must somehow move from the domain of combinatorial problems to the domain of real
analysis. The standard difficult combinatorial problem is called SAT, and almost any
attempt at showing that a problem is hard begins with it. Given a Boolean formula F of
length n, SAT asks the question of whether there is an assignment of true or false to each
variable of F that makes F true. In general, for a formula F of length n and containing
at most n variables, we know no better way of finding a satisfying assignment for F than
testing all 2' possible truth assignments. Our suspicion is f %at it is not possible to do
better.

Since SAT is NP-complete, any problem in NP can be converted into an equivalent
problem that involves finding satisfying assignments of Boolean formulas. This conversion
is such that if the satisfying assignments could be found quickly, then the original problem
could be solved quickly. So efforts to find efficient algorithms for NP problems need only
concentrate on finding efficient algorithms for SAT. The flip side of this relationship is
that whenever we find a problem X such that being able to solve X helps us solve SAT,
we suspect that there will be no efficient solution for X.

To show that integration is hard, we need only show how it can be used to solve some
aspect of SAT, or of the corresponding #P-complete problem, #SAT, which asks how
many satisfying assignments are there for formula F? The key idea is that integration
can be used to count. All we require is a feasible real function S that maps Boolean
formulas onto intervals of the real line in such a way that the integral of S, over the interval
associated with formula F, corresponds to the number of its satisfying assignments. Being
able to integrate S feasibly implies being able to feasibly count satisfying assignments,
which implies P = #P. We call such a function as S a satisfiability function.

How do we convert a discontinuous combinatorial problem into one involving contin-
uous functions? We briefly describe the construction of S from [Ho87].

Let x be a positive integer. The function S considers each interval [x, z + 1] to encode
some fixed boolean formula F. This interval is further divided by S into a number

179

of subintervals of fixed width 6, one for each possible assignment A of true or false to
each of the variables in F. The value of S is defined on each subinterval as follows: If
the assignment A satisfies F, then S is a triangular peak of height 6 centered in the
subinterval, and with height 0 at the end points of the subinterval. If the assignment A
does not satisfy F, then S is the constant function 0 over the subinterval. Thus, S is a
piecewise-linear continuous function with a peak at each satisfying assignment, and zero
elsewhere. (Actually a version of SAT can be constructed that is infinitely differentiable
and is still feasible, so smoothness is not an issue.)

The S function is best implemented using the unstructured Turing machine model,
in which it is easy to see that a polynomial time bounded Turing machine can do the
necessary decoding and testing for satisfiability. Then the equivalence theorem of the
previous section can be applied to get an inverse-free feasible-size-magnitude circuit family
{,,) that computes S.

Now, for integer x corresponding to formula F, integrating S over the interval (x, x + 1]
will compute the area of all the peaks at satisfying assignments, and so dividing by the
area of one peak counts the number of satisfying assignments for F. Thus, if the indefinite
integral of a feasible real function were itself a feasible real function, then it would require
only nO) time to count the number of satisfying assignments of an arbitrary, length n,
boolean formula, and thus #SAT would have an efficient solution. As this would imply
P = NP = #P, this is considered most unlikely.

The previous integration need not be done exactly, and for lxi _< 2n it is sufficient to ap-
proximately integrate the polynomial an rather than the function S. So it's even unlikely
that there is a family of feasible-size-magnitude circuits whose members approximate the
integrals of the members of {a,}.

The following result [Ho87j summarizes this discussion. Note that it says that there is
a specific family of polynomials that are easy to compute but whose individual integrals are
hard to even approximate-never mind the general problem of computing the integration
operator.
Theorem 4.1 There is a family {a) of inverse-free feasible-size-magnitude arithmetic

circuits such that the following are equivalent:

1. There is a family {#in} of feasible-size-magnitude arithmetic circuits such that, for
X E 1-2", 2"]

I -lnX)- j a(y)dy 1 - 2-

2. P=#P

Furthermore, observing that the maximum operator can be used to detect peaks, and
thus detect satisfying assignments leads to a similar result for the class NP.

Theorem 4.2 There is a family {an} of inverse-free feasible-size-magnitude arithmetic
circuits such that the following are equivalent:

1. There is a family {(f,} of feasible-size-magnitude arithmetic circuits such that, for
xE [-2n,2]

.(z) - ,max o,,,(y) I < 2-n

2. P=NP.

So even for easy to compute polynomials, the problems of integration and finding the
maximum are hard. Perhaps the question that we should really be asking is why is it
so difficult to compute the norms of easy to compute real functions, and what further
structure is required on the computation of such functions so that operators become easy.

180

Acknowledgement

This research was supported by the Natural Sciences and Engineering Research Council
of Canada grant OGP 38937.

References

[Ab8o] 0. Aberth. Computable Analysis. 1980. McGraw-Hill.

[Bi67] E. Bishop. Foundations of Constructive Analysis. 1967. McGraw-Hill.

[BB86] J. M. Borwein and P. B. Borwein. On the complexity of familiar functions and
numbers. Draft. Private Communication, 1986.

[Fr84] H. Friedman. The computational complexity of maximization and integration.
Adv. in Math., 53, 1984, 80-98.

(GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.

[vzG86] J. von zur Gathen. Feasible arithmetic computations: Valiant's hypothesis. J.
Symb. Comp., 4, 1987, 137-172.

[vzGS86] J. von zur Gathen and G. Seroussi. Boolean circuits versus arithmetic circuits.
Proc. 6th Int. Conf. in Computer Science, Santiago, Chile. 1986, 171-184.

[Gr57 A. Grzegorczyk. On the definition of computable real continuous functions.
Fund. Math., 44, 1957, 61-71.

[Ho87] H. J. Hoover. Feasibly constructive analysis. Ph.D. thesis and Technical Report
206/87, Department of Computer Science, University of Toronto, 1987.

[Ho88] H. J. Hoover. Feasible real functions and arithmetic circuits. Technical Report
TR 88-16, August 1988, Department of Computing Science, University of Al-
berta, Edmonton, Canada.

[KF82] K. Ko and H. Friedman. Computational complexity of real functions. Theoret.
Comput. Sci., 20, 1982, 323-352.

[Tu36] A. M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proc. London Math. Soc. (2), 42, 1936/37, 230-265.

[Tu37] A. M. Turing. A correction. Proc. London Math. Soc. (2), 43, 1937, 544-546.

181

LIOUVILLIAN SOLUTIONS OF LINEAR DIFFERENTIAL

EQUATIONS WITH LIOUVILLIAN COEFFICIENTS

Extended Abstract

Michael F. Singer 1
Department of Mathematics, Box 8205

North Carolina State University
Raleigh, N.C. 27695

ABSTRACT. Let L(y) = b be a linear differential equation with coefficients in a differential field
K. We discuss the problem of deciding if such an equation has a non -zero solution in K and
give a decision procedure in case K is an elementary extension of the field of rational functions
or is an algebraic extension of a transcendental liouvillian extension of the field of rational
functions. We show how one can use this result to give a procedure to find a basis for the space
of liouvillian solutions of L(y) = 0 where L(y) has coefficients in such a field.

I will consider the following two questions: Let K be a differential field and let
an- 1' ... ao , b e K. Let L(y) = y(n) + an-ly(n-1) + ... + aoy.

Question 1. When does L(y) = b have non-zero solutions in K and how can one find all such
solutions?

Question 2. When does L(y) = 0 have a non-zero solution y such that y'/y e K and how does one

find all such solutions?

In [SING88], I present an algorithm to answer these questions when K is an elementary
extension of C(x) or K is an algebraic extension of a purely transcendental liouvillian extension
of C(x), where C is a computable algebraically closed field of characteristic zero. Before I discuss
this algorithm, I will discuss why these are important questions and how they are related to each
other. First, let me recall some definitions. A field K is said to be a differential field with
derivation D:K ----4 K if D satisfies D(a+b) = D(a) +D(b) and D(ab) = (Da)b + a(Db) for all a,b e
K. The set C(K) = (c I Dc = 0) is a subfield called the field of constants of K. We will usually
denote the derivation by ', i.e. a'=Da. A good example to keep in mind is the field of rational
functions C(x) with derivation d/dx (C denotes the complex numbers). All fields in this paper,
without further mention, are of characteristic zero. We say K is a liouvillian extension of k if
there is a tower of fields k = Ko c K1 c ... c Kn = K such that for each i = 1, ... n, Ki = Kil(ti)

where either (a) ti'e Ki_1 or (b) ti'/ti e Ki. or (c) ti is algebraic over Ki_1 . For example

2
(xeX2 e) is a liouvillian extension of (x). We say K is an elementary extension of k if

there is a tower of-fields k = Ko c K1 ... c Kn = K such that for each i = 1, ... n, Ki = Kiti)
where either (a) for some u# in Ki 1, ti = u'/ui or (b) for some ui in K.i, t.'/t- ui' or (c) ti is

algebraic over Ki_1 . For example C(x, log x, e(log x) 2) is an elementary extension of C(x). The

example following the defiiition of liouvillian extension is not an elementary extension of (x)
2

since Jex lies in no elementary extension of C(x). We say that w is liouvillian (elementary) over

k~iLfwbelongs to aliouvillian (elementary) extension of k.
Algorithms to answer questions 1 and 2 would be useful in solving two other problems.

First of all, an answer to question 1 would have a bearing on the Risch Algorithm. In a series of

papers [RISCH68], [RISCH69], [RISCH70], Risch gave a procedure to answer the following

question: Given ot in an elementary extension K of C(x) (C a finitely generated extension of the

rational numbers Q and C(K) = C), decide if fa lies in an elementary extension of K. Liouville's

Theorem states that if a has an antiderivative in an elementary extension of K, then ax = vo +

Ycivi/vi where v0 e K, v1, ... ,vn e CK and ci e C0, where (is the algebraic closure of C. Risch's

algorithm gives a procedure to decide if such elements exist. As a corollary of Liouville's

Theorem, one can show that if a is of the form feg with f and g in K, then a has an elementary
anti-derivative if and only if y'+g'y=f has a solution y in K (i.e. if and only if there is a y in K

such that (yeg)' = feg). In genc,al, Risch's Algorithm forces one to deal, again and again, with
this same question: given f and g in an elementary extension K of C(x), decide if y'+g'y=f has a

solution in K. When K is a purely transcendental extension of C(x), one may write K = E(t)

with t' s E or t'/t e E and t transcendental over E. Letting

m ,ni a (t + h(t)
Y= i lj=l (Pi(t)V

be the partial fraction decomposition of y, one can plug this expression into y' + g'y = f.
Equating powers and using the uniqueness of partial fraction decompositions, one can find a finite

number of candidates for the pi's and bound the degree of h. This allows one to find all possible

solutions y. (In fact there are now improvements on this idea. Rothstein [ROTH76] showed how
one can use "Hermite Reduction" to postpone, as much as possible, the need to factor

polynomials). When K is not a purely transcendental extension of C(x), but involves algebraics in
the tower, things are more complicated. In the purely transcendental case, partial fractions gave

us a global normal form that captured all necessary local information (e.g. the factors of the

denominators and the powers to which they appear). When algebraics occur, one does not have

this normal form. If K = E(t,,Y) with y algebraic of degree n over E(t), one may write y = bo +

bly + ... +bn-l? - 1 with the bi e E(t). To find the bi, one is forced to work with puiseux

expansions (a local normal form) at each place of the function field E(t,'Y). Although Risch

183

showed that this approach does yield an algorithm, it is much more complex than the purely

transcendental case (Bronstein [BRON87] has made significant improvements in the Risch

algorithm and can avoid puiseux expansions in many situations, but he is still forced to consider

them in certain cases). One would like to reduce the question of deciding if y'+g'y = f has a
solution in E(t,T) to a similar question in E(t), where one could apply partial fraction techiiques
and a suitable induction hypothesis. If we vite y = bo+b1f + ... +bnl^?-1, substitute into y'

+g'y = f, and equate powers of y, we get a system of first order linear differential equations for

the bi with coefficients in E(t). This system is equivalent to an nth order lnear differential

equation. If we could answer question 1 for E(t), then we could solve this equation.
The second place these questions arise is in the general problem of finding liouvillian

solutions of linear differential equations with liouvillian coefficients. In [SING81], I showed that
given a homogeneous linear differential equation L(y) = 0 with coefficients in F, a finite algebraic

extension of Q(x), one can find in a finite number of steps, a basis for the vector space of
liouvillian solutions of L(y) = 0. I would like to extend this result to find, given a homogeneous
linear differential equation with coefficients in a liouvillian extension K of Q(x), a basis for the
liouvillian solutions of L(y) = 0. One can show that to solve this problem, it is sufficient to find

one non-zero liouvillian solution. An inductive procedure would then allow one to find all such

solutions. To see how problem 2 fits into this, I will outline the procedure to decide if a given
L(y) = 0 with coefficients in K has a non-zero liouvillian solution. It is known [SING81] that if
L(y) = 0 has a non-zero liouvillian solution, then there is a solution y such that u = y'/y is

algebraic over K of degree bounded by an integer N that depends only on the order of L(y).
Furthermore there are effective estimates for N. Therefore, for some m N, u satisfies an
irreducible equation of the form f(u) = um + amlum-1 + ... + ao = 0 with the ai e K. We must

now find the possible ai e K and test to see if, for such a choice of ai , e satisfies L(y) = 0. For

example, let us try to determine the possible amI. If u = u1, ... um are the roots of f(u) = 0 and

fu 1 Jui
Yl= e satisfies L(y) = 0, then for i 2, ... m, yi = e also satisfies L(y) = 0. We have

_1= -(u, +... + um Yll YLYl Yi Yl "

One can show that the product y, ... Ym satisfies a homogeneous linear differential equation

Lcm (y) = 0 and that y'/y e K. Finding all such solutions is just problem 2 above. Theorem 2

below states that for certain liouvillian extensions K, we can fill in the details of the above

argument and give a procedure to find a basis for the vector space of liouvillian solutions of L(y)
| =0.

-0. The first result of [SING88] states that we can reduce Question 2 to Question l.We shall

consider fields of the form E(t), where either t' e E, t/t e E or t is algebraic over E and where E

184

satisfies certain hypotheses. We can show that for these fields, if we can answer question 1

algorithmically then we can answer question 2 algorithmically. To make this precise, we need

some definitions. We call a differential field K a computable differential field if the field
operations and the derivation are 'ecursive functions and if we can effectively factor polynomials

over K. We say that we cc-: effectively solve homogeneous linear differential equations over K if
for any homogeneous linear differential equation L(y) = 0 with coefficients in K, we can

effectively find a basis for the vector space of all y , K such that L(y) = 0. We say that we can

effectively find all exponential solutions of homogeneous linear differential equations over K if
for any homogeneous linear differential equation L(y) = 0 with coefficients in K, we can

effectively find u1 ... um in K such that if L(eju) =0 for some u e K, then e /e e K for

some i. The precise result is:

Proposition 1. Let E c E(t) be computable differential fields with C(E) = C(E(t)), an algebraically
closed field, and assume that either t' e E or t'/t e E or t is algebraic over E. Assume that we can
effectively solve homogeneous linear differential equations over E(t) and that we can effectively
find all exponential solutions of homogeneous linear differential equations over E. Then we can

effectively find all exponential solutions of homogeneous linear differential equations over E(t).

The proof of this is contained in [SING88], but I will give an example of the algorithm
below. First recall some facts about the Riccati equation. If u is a differential variable andu(i-1)) eU,
y = elu, formal differentiation yields y(i) = Pi(u, U...) e, where the Pi are polynomials

V ger coefficients satisfying Po = 1 and Pi. = Pi_ + uPi-l If L(y) = y(n) + An-ly(n-1) +

= 0 is a linear differential equation, then y = efu satisfies L(y) = 0 if and only if u

satizfies R(i (u, ... , u(n - I)) + An lPn l(u, ... u(n - 2)) ++ Ao = 0. This latter equation

is called the Riccati equation associated with L(y) = 0.

Example 1. Let E = Q(x) and t = log x. We shall consider the differential equation

L(y) = y" 1 y' -(log x + 1) y = 0

and decide if it has solutions of the form eju with u e E(t). We shall assume that the hypotheses
of the theorem are-satisfied by E and proceed to find the partial fraction decomposition of u. The

associated Riccati equation is

R(u)=(u' +u2)+(log 1 u-(logx+ 1)2=0.Xlgx + 1)

Assume that u is a solution of R(u) = 0 in E(t) = Q(x,log x). If p(t) t+l is irreducible in E[t],

185

then the order of u at p(t) is bigger than or equal to -1. Furthermore, if the order is -1, then the
leading term is p'/p. At log x + 1, we may write

4U
=+ 2L...T.+

(log x + 1)^ (log x + 1)' "

Substituting this expression in R(u) and comparing leading terms, one see that if y>I, then the

leading term in R(u) is uT(log x + 1)2 . If I = 1, then the leading term (after some cancellation)

is u, 2 (log x + 1)2. This means that u cannot have a pole at log x + 1. We therefore have that u

-!. + s where the pi are irreducible polynomials in E(t], not equal to t+1 and s is a
pi

polynomial in E[t]. We now proceed to determine s(t) = smtM + ... + so. Plugging into R(u) and

comparing terms we see that m = 1 and s1 = ±1 and so s(t) = ±t+so= ±log x + so. We therefore

alter L(y) in two ways. Let Ll(y) = L(ye - 'lO g x))/e-lOg x

Y"+ 2xlI g2xo + x2x lI g x - Iy,+-2x Iog2Xxo-3XlOgx x +1
2~ x + x x + 1

Let L2 (y) = L(yeflog X)/eflog x =

+ -2xlog2x - 2xlog x - I P + -2xlog2x -3xlogx - x - I

Y"+ xlog x + x xlog x+x Y

To determine the possible s. we consider L1 and L2 separately. In both cases we are looking for

solutions of this equation of the form y = e with so in E. For L1 , if we expand the

coefficients in decreasing powers of log x, we get

Ll() = y" + (2 log x +...) y' + (-2log x +...)y = 0.

Is A

C will satisfy Ll(y) = 2y' -2y = 0. By the hypotheses, we can find exponential solutions of

this latter equation over E = Q(x). In fact, ex is the only such solution i.e. the only possibility for

so is 1. We now modify Ll(y) and form Li(y) = Ll(yeX)/eX =

y,+ 2xlog 2x + 4xlog x +2x - Ixgx +

186

We are looking for solutions of this latter equation of the form r(t)exp(-(; L)) with r(t) E E(t),

* that is solutions in E(t). A partial fractions argument shows that the only such solutions are

constants. This implies that our original equation has a solution of the form e .flog x + x =

e xlog X. Repeating this proceedure for L2 (y) would yield a solution of our original equation of

* the form ef -log x -x = e.-xlog x

I now turn to the problem of effectively answeriig question 1 for fields of the form E(t)

where E satisfies a ,uitable hypothesis and either t'/t e E, t' E E or t is algebraic over E. I

actually deal with a slightly more general question related to the following definition. Let K be a

differential field. We say that we can effectively solve parameterized linear differential equations

over K if given a n 1 ao bmp ... b in K, one can effectively find h1 hr in K and a system

-Vin m+r variables with coefficients in C(K) such that y(n) + an ly(nl) + ... + aoy = bl +..

+ cmbm for y e K and c i in C(K) if and only if y = ylhl + ... + yrhr where the yi e C(K) and

cl , c , Yl, ... Yr satisfy X Obviously, if K is computable and we can effectively solve

parameterized linear differential equations over K, then we can effectively solve homogeneous
linear differential equations over K. In [SING88], I show the following:

Proposition 2. Let E c E(t) be computable differential fields with C(E) = C(E(t)). Assume that
we can effectively solve parameterized linear differential equations over E.

a) If t is algebraic over E or if t E , then we can effectively solve parameterized linear

differential equations over E(t).
b) If t is transcendental over E and t'/t e E, assume that we can effectively find all

exponential solutions of homogeneous linear differential equations over E and that for any u in E,
we can decide if y'+uy=0 has a nonzero solution in E(t) and find all such solutions if one exists.

Then we can effectively solve parameterized linear differential equations over E(t).

A few words need to be said about the assumption in the previous proposition that for u e
E we can decide if y'+uy=O has a solution in E(t). A priori, this is stronger than the assumption

that we can decide effectively find all exponential solutions or all solutions of homogeneous
linear differential equations over E. Since t/t e E, it is known ([ROS76], Theorem 2) that any

solution in E(t) of y'+uy = 0 must be of the form yntn for some integer n. Yn will then satisfy yn

+ (u + n(t/t)) Yn = 0. We are therefore asking to decide if there is some integer n such that this

latter equation has a non-zero solution in E. Similar problems come up in the Risch algorithm for

integration in finite terms (we are asking if u =- log yn + n log t for some yn and integer n). We

do not know how to reduce this question to the assumptions that we can effectively find all

exponential solutions or effectively solve homogeneous linear differential equations. We are able

187

to show in [SING88] that this condition holds when E is an elementary extension of C(x), x!=l

and C a computable field of constants or when E is a purely transcendental liouvillian extension

of C(x). I am not able to show that this condition holds for arbitrary liouvillian extensions of

C(x) and the difficulty is related to the problem of parameterized integration in finite terms
mentioned in [DASl86). I will illustrate part b of the above proposition with the following
example.

Example 2. Let E = and t ex. Consider the linear differential equation

--24eX -25 .20e x

4ex + 5 4ex + 5

We wish to find all solutions of this equation in 9(eX). Using p-adic expansions for p~t, one can

easily show that any solution must be of the form yt' + ... + yst . We therefore clear

denominators in the above differential equation and consider

(1) (4t + 5)y" + (-24t-25)y' + 20ty = 0

Comparing highest powers of t, we see that yst5 satisfies 4y"-24y'+20y = 0. We use the

hypotheses of the proposition to find solutions of this equation that are exponential over E and
see that e5x and ex are such solutions. We use the other induction hypotheses to decide if
y'-5y=O and y'-y--O have solutions in E(t), and see that both e5x and ex are in Q(eX). Therefore 8

: 5. Comparing lowest powers of t, we see that y/tT satisfies 5y' '-25y'+20y = 0. This latter

equation has solutions e4 x and ex in Q(eX). Since 'y 0, we conclude that either y = 0 or y7 = 0.

Therefore y = Y5 t5+ ... +yo for some yi constants. If we substitute this expression in (1) we get

the following

-12Y 4 t5+ (-20y4 -16y 3)t4 + (-30y3 -12y 2)t3 + (-30y 2)t2 + (-20yo-20yl)t 0

Equating powers of t to 0 and solving gives us that y2=y3 =y4=0 and yo=Yl. Therefore, solutions

of (4) in E(t) are of the form cle'x + c2 (eX+l) where c, and are arbitrary constants.

Turning to part a of the above proposition, we note that when t is algebraic over E,

methods similar to those described in ([SING81], Proposition 3.3) yield the desired result. When

V e E, the key to the proposition is the following result.

188

Lemma. Let E c E(t) be computable differential fields with C(E) = C(E(t)), t transcendental over
E and t' e E. Assume that we can effectively solve parameterized linear differential equations
over E. Let An, B1 e Eft]. Then we can effectively find an integer M such that if

Y = Yo + "'" + YWt , yTO0 is a solution of

(2) AnY(n) + ...+ AoY mBm + ...+ clB 1

for some ci a C(E) then y < M.

The idea behind this lemma is the following. Let Ai = ait + ... +ae, B. =

bipt + ... i. If we formally substitute Y =yt3+ ... into (2) and equate coefficients, we see
n (i)that y satisfies . a-,y =0. Our induction hypothesis allows us to find zY,1 z such that

i=0y

y = Ykiz . where c are undetermined constants. Replacing by this expression we move on

to attempt to find yy-,. y-1 satiafies a linear differential equation whose coefficients depend on

the c i and y. The existence of a solution of this differential equation turns out to be equivalent

to y satisfying a polynomial equation fl(T) = 0. If f, is not identically zero, this places a

restriction on y and allows us to bound y. If fl is identically zero, then we proceed to try and

determine YY-2. YY- 2 also satisfies a linear differential equation, whose solvability is equivalent

to ' satisfying f2(y) = 0. If f2 is not identically zero, we can bound y, otherwise we must

continue. In [SING88], we show that at some point we must have n being not identically zero.

Therefore this procedure terminates. At present we are unable to give an apriori estimate of when
this procedure does terminate; we do not even know if it is primitive recursive. Clearly, such a
bound would be desirable. We illustrate this sketchy description with an example.

Example 3. Let E = Q(x) and t = log x. Let

L(y) = (x2 log2x) y" + (xlog 2x -3xlog x) y' + 3 y = 0

We will look for solutions y of L(y) = 0 in E(t) = Q(x,log x). Considering y as a rational function
of t, we see that the only possible irreducible factor of the denominator is t = log x. If we expand
y in powers of log x and write y = y/(log x)ca + we see that the leading coefficient in L(y) is
Yo[CC+l)(l/x) 2 3(1/x)2(.-) + 31x2]. Since this must equal zero, we have that ot((X+2) = 0.

Therefore a = 0. This means that any solution of L(y) = 0 in E(t) is actually in E[t]. We let y =

189

y/ + +Y-1 ... and substitute into L(y) = 0. Calculating the coefficients of powers of t, we

get the following:

Coefficient of t

t

7+2 L/(y, = X y/" + x Y

7+1 L (Y7_l) = x2 + x YI 1 + (2yx -3x) y'

y.(y_ 2 y 2 + (2yx - 5x) yT I + (y2
-4/+3) Yy

It is easy to see that Ly, = 0 has only constant solutions in E. Replacing y7 by Ce,. I in

L7_1(y _2) yields the equation x2y,' 1 + x y.' = 0 for y._ I . This new equation has only

constant solutions in E and places no restrictions on y. We let Y- 1 = c7-1,1' 1 and substitute in
the expression L_ 2 (y_ 2). We obtain

x2Y"- + xY,-2 + (/2 - 47 + 3)c, I = 0.

Since c7,1*0, this latter equation has a solution in E if and only if -4y + 3 = 0. This implies

that y < 3. Therefore y = y3 t3 + y2t2 + ylt + y0 . Substituting this expression into L(y) = 0 and

calculating the coefficients of powers of t, we find:

t Coefficient of tt

5 L3 (y3) = x2 yi' + x Y3

4 L2 (Y2) =x2 y2 " + x y' + 3x y'
3Ll(Yl) = x2 y,, + x Y, + x y

2 Lo(yo) = x2 Yo' + x yo -x y'

2 Y

1 -3x yl'

0 3 YO

Successively setting these expression equal to zero and finding solutions in E yields that Y3 and

3YY, are arbitraruy constants and y2 and yo are 0. Therefore all solutions of L(y) =0 in Q(x, log x)

are-of the form c(log x) 3 + 2 log x.

Using the results of the above propositions, I can answer questions 1 and 2 for certain

190

classes of fields.

Theorem 1 Let C be a computable field and assume that either:

(i) K is an elementary extension of C(x) with x'=l and C(K) = C, or
(ii) K is an algebraic extension of a purely transcendental liouvillian extension of C

with C(K) = C.

Then one can effectively find exponential solutions of homogeneous linear differential equations
over K and effectively solve parameterized linear differential equations over K.

Using these results and techniques similar to those in [SING81], I can also show

Theorem 2 Let C and K be as in Theorem 4.1 with C algebraically closed. If L(y) = 0 is a

homogeneous linear differential equation with coefficients in K, then one can find a basis for the
space of solutions of L(y) = 0 liouvillian over K.

REFERENCES

[BRON87] Manuel Bronstein, Integration of Elementary Functions, Ph.D. Thesis, University of
California, Berkeley, 1987

[DASI86] J.H. Davenport, M.F. Singer, "Elementary and liouvillian solutions of linear differential
equations," J. Symbolic Computation (1986), 2, 237-260.

[RISCH68] Robert H. Risch, "On the integration of elementary functions which are built up using
algebraic operations," SDC Report, SP-2801/002/00, 1968.

[RISCH69j.. ... ,, "The problem of integration in finite terms," Trans AMS, 139, 167-189.

[RISCH70Q , "The solution of the problem of integration in finite terms," Bull. AMS,
76,605-608.

[ROS76] 1A Rosenlicht, "On Liouville's theory of elementary functions," Pacific J. Math. 65,
485-492.

[ROTH76] M. Rothstein, Aspects of Symbolic Integration and Simplification of Exponential and
Primitive Functions, Ph.D. Thesis, Univ of Wisconsin, Madison, 1976.

[SING81] M.F. Singer, "Liouvillian solutions of nthorder homogeneous linear differential
equations," Amer. J. Math., 103, 661-681.

[SING88] , "Liouvillian solutions of linear differential equations with liouvillian
coefficients," Submitted to the Journal for Symbolic Computation

191

Recipes for Classes of Definite Integrals
Involving Exponentials and Logarithms

K.O. Geddes* and T.C. Scott**
*Department of Computer Science and

**Department of Physics
University of Waterloo

Waterloo, Ontario
Canada N2L 3G1

Abstrac-t. There are many classes of definite integrals for which the corresponding
indefinite integral cannot be expressed in closed form whereas the definite integral can
be expressed (often in terms of special functions). A computer algebra system should be
capable of recognizing a wide variety of definite integrals and, in order to achieve a
broad coverage, it is desirable to encode this knowledge in programs which are more gen-
eral than simple table look-up. By exploiting integral definitions of the various special
functions of mathematics and by generalization and differentiation, we are able to
derive closed-form solutions for broad classes of definite integrals. In this paper we
treat integrals involving exponentials and logarithms. The resulting programs, based on
pattern matching and differentiation, are very efficient.

1. Introduction
The indefinite integration problem for elementary functions has been extensively stu-

died in recent decades [Ris69,Tra84,Bro87]. There has also been some progress on algo-
rithms to handle some non-elementary functions [Che85,Che86. Nonetheless, in
mathematical applications there arise many definite integrals which can be expressed in
closed form (often in terms of special functions) while the corresponding indefinite
integral cannot be so expressed.

In a computer algebra system, one approach is to store a table of "common" definite
integrals with corresponding symbolic values. Such an approach is limited by the set of
integrals stored in the table. It is desirable to have more general programs for dealing
with classes of definite integrals.

Wang[Wan71] presented some algorithmic methods for computing definite integrals
using, for example, contour integration techniques. Kolbig[Ko185] presents another
approach for a specialized class of definite integrals. We propose a scheme which, start-
ing with an integral definition of any particular special function, derives a wide class of
definite integrals which can be expressed in closed form. This approach is more general
than Kolbig's methods, and the resulting programs execute very quickly compared with
Wang's methods. In this paper, we apply the technique for some integrals involving
exponentials and logarithms.

This work was supported in part by grants from the Natural Sciences and Engineering Research Council of Canada and
in part by grants from the Information Technology Research Centre of Ontario.

I1

2. Integrals Related to the Gamma Function
Consider the standard integral definition of the Gamma function[AbrOB]

00

r(z) = ftz - exp(-t) dt, Re(z) > 0
0

Of course, if we have an integrand which matches the form of the integrand appearing in
this integral definition, with interval of integration from 0 to oo, then we can immedi-
ately express the result in terms of F(z). However, we can generalize this integral in
several ways.

2.1. Generalizations of the Gamma integral

The first form of generalization is to apply differentiation with respect to z, yielding
the formula

- (z) ftz- ln(t)" exp(-t) dt
0

This has introduced a logarithmic term into the class of integrals.
Next, let us generalize the exponential term by applying the transformation of vari-

ables t = x' where s is a nonzero real number. Taking into account the sign of s, this
yields

d m 0 0
-z r(z) = signum(s) sm" f x8z- 1 ln(x)m exp(-x 8) dx

dz' 0

In other words, we now have a formula for a class of integrals where the integrand
involves exponentials and logarithms:

fo t' n(t)' exp(-t') dt = signum(s) z-(+ .d m (z) W-+!(i

In formula (I), the parameters must satisfy:
m is a nonnegative integer;
a is a nonzero real number;

w is a complex number such that Re(--W+ -) > 0.

It is possible to further generalize the "In" and "exp" arguments appearing in for-
mula (1). Suppose that we have an integral of the form (1) except that the "In" term has
the more general form In(b td)",, where b is a positive real number and d is any real
number. This term can be expressed in the form

(In(b) + dln(t))m

and by expanding in a binomial series, the integral is reduced to a sequence of integrals of
the form (1).

Next suppose that we have an integral of the form (1) except that the exp term has
the more general form exp(-u 08), where u is a positive real number. By applying the
change of variables t = u-/ x, the integral reduces to the form (1) but with generalized
In term ln(u - / x)m, -which can be treated by the technique just mentioned.

In summary, we can write a program which will express in closed form any definite
integral of the form

193

cc
f t" ' ln(btd)" exp(-u t) dt
0

where
m is a nonnegative integer;
b and u are positive real numbers;
d is any real number;
s is a nonzero real number;

iv is a complex number such that Re(-) > 0.

The value of such an integral will be expressed in terms of the Gamma function and its
derivatives, which are usually expressed in terms of other special functions.

2.2. Examples
In the examples presented here, simplifications known to the Maple system for the

Gamma function and its derivatives evaluated at particular points have already been
applied. The examples are presented in the notation of Maple output. In particular,
GAVM(z), Psa(z), and Zeta(z) denote the functions indi-ated by these names and
Psi(n,z) denotes the n'h derivative of Psi(z)). The constants appearing here are Pi (the
constant 7r) and gamma (Euler's constant q).

infinity
/ 2
1 exp(- t) Pi

--------- dt =---------------

1/2 1/2
/ t 2 GAN14A(3/4)

0

infinity
/

1/2

I t ln(t) exp(- t dt = 44 - 24 gamma

/

0

194

2 1

infinity ln(t) exp(- ---)
/ 2

t 1 2 2
-dt -- P1 +1/8 gamma

3 48

/ t
0

2 1
infinity ln(t) exp(- -)

/ 4
t

-dt =

3/2

/ t
0

1 1 2

---- Psl, 1/8) GAMMA(1/8) + ---- Psi(1/8) GAMMA(1/8)

64 64

infinity
/

2/3 1 3 1/3

t ln(3 ----) exp(- 2 t)dt =

1/2

I t
0

3/2 3 3/2 2

9/4 ln(3 2) - 3/64 ln(3 2) (450 - 216 gamma)

3/2 2 2

+ 3/128 In(3 2) (1890 + 108 P1 - 2700 gamma + 648 gamma)

243 2025 2 8505 243 2

+- Zeta(3) -..... .--- - --- + -gamma + ---- gamma Pi

16 256 128 64

6075 2 243 3 1215

-......-gamma +- --- gamma-------

128 32 64

195

3. Integrals Related to the Polygamma Functions

Let 0")(z) denote the nt h Polygamma function, defined as the nth derivative of the
Digamma (Psi) function:

=Z r(z)
Consider the following integral definition for the nth Polygamma function[Abr66]

O -)(z) = (-1)n+l ft' exp(-zt) A , Re(z) >0 ,
1 - exp(-)

where n is a positive integer.

Of course, if we have an integrand which matches the form of the integrand appear-
ing in this integral definition, with interval of integration from 0 to o, then we can
immediately express the result in terms of 00n)(z). However, we can generalize this
integral as follows.

3.1. Generalizations of the Polygamma integral

The first type of generalization used in the previous section was differentiation, but
in the present case we gain nothing new by differentiation with respect to z since our
class this time is a sequence of derivatives of 4(z).

We can generalize the exponential terms as in the previous section. Applying the
transformation of variables t = v x where v is a positive real number yields

¢%) = f exp(-z d
0 1 - exp(-vX) d

Evaluating this formula at z = -- where u is a positive real number, we have the follow-
V

ing result for a class of integrals:

fX n exp(-u X) dx 0")(,
0 1 - exp(- vx) v

A further generalization of the exponential term is obtained via the transformation
of variables x = tV where s is a nonzero real number. Writing w = (n+1)s - 1 and
expressing the formula in terms of m = n+1 we get (taking into account the sign of s)

f t' exp(-u t ') dt - (2)

o 1 - exp(-vtV) Is Iv V

where m w In formula (2), the parameters must satisfy:

u, v are positive real numbers;
. is a nonzero real number;

w is a real number such that m = is an integer > 1 .

In comparison with the previous section, formula (2) is less general because we have
not included a logarithmic term in the integrand. A logarithmic term would be generated
by differentiation with respect to the variable w appearing in formula (2), but in this for-
mulation the severe restrictions on w rule out differentiation. The desired generalization
is achieved by considering the Riemann Zeta function.

196

4. Integrals Related to the Riernann Zeta Function
Consider the Zeta function defined by[Abr66]

a~e(z) > 1
k-1

and its corresponding integral definition which can be expressed in the form

'1 tZ- exp(-t) d, Re(z) > 1
((z) 0 1-exp(-t)

Note that the integral appearing here would fit into the class specified by formula
(2) of the preceding section, except that the power of t appearing in the integrand is no
longer severely restricted. This allows us to achieve the desired generalizations.

4.1. Generalizations of the Zeta integral

The first form of generalization is to apply differentiation with respect to z to the
product fui ction r(z) (z), yielding the formula

d,- (Z) Z) -- 1 - exp(-t)

This has introduced a logarithmic term into the class of integrals.

As before, let us generalize the exponential term by applying the transformation of
variables t = x" where s is a nonzero real number. Taking into account the sign of s, this
yields

dm + 00 7 X "z - ln(x)m exp(-x")dz- (z)5(z)) = signum(8) 8 fex(- 8 dx
dzm~\~\Z) o0 1 - exp(-x 8) d

In other words, we now have a formula for a class of integrals where the integrand
involves exponentials and logarithms:

f U.- .F'1um(3 8-"') (r~zMz)Iz-W+1 (3)o 1 - exp(-td) iu)(

In formula (3), the parameters must satisfy:
m is a nonnegative integer;
8 is a nonzero real number;

w is a complex number such that Re(-)> 1 .

It is possible to further generalize the In and exp arguments appearing in formula (3)
exactly as in the case of the Gamma integral.

Comparing with formula (2) of the preceding section, formula (3) is less general than
desired. While we have managed to introduce a logarithmic term, we would like to allow
the exponential terms in the numerator and denominator to be independent of each other
in the sense of formula (2). The two-argument Zeta function provides precisely the
desired generalization, as we see in the next section.

197

5. Integrals Related to the Two-argument Zeta Function

Consider the generalized Riemann Zeta function defined by[Gra65]

q) = q. . , Re(z)>1
k-0o(q + k)z

and its corresponding integral definition
1 tz-, exp(-q t)

q) 0 t-exp(-t) dt, q>0, Re(z)>l
-r~z)~1 - exp(-t)

Note that (z,1)=

5.1. Generalizations of the Two-argument Zeta integral
We can generalize the exponential terms just as we did for the Polygamma integrals.

Applying the transformation of variables t = vx where v is a positive real number yields

v z 00 xz- 1 exp(-qvx)

(z,q) - r(z) 0 1 - exp(-vx)

Evaluating this formula at q - - where u is a positive real number, we have the follow-
V

ing result for a class of integrals:

00 1r(z)(z,)
x - exp(-uX) dx V

0 1 -exp(-vx) V

The next form of generalization is to apply differentiation m times with respect to z
yielding the formula

1 -exp(-vx) dx = dz i [j
0 nx~ ex(x i v

This has introduced a logarithmic term into the class of integrals.

A further generalization of the exponential term is obtained via the transformation
of variables x = tV where s is a nonzero real number. Writing w = s z - 1 we get (tak-
ing into account the sign of s)

tw ln(t)m exp(-u t0) dmi(-(+) -- (4)

0 1 - exp(-vt8) gdz . v ii +-- "

In formula (4), the parameters must satisfy:
m is a nonnegative integer;
u, v are positive real numbers;
s is a nonzero real number;

w is a complex number such that Re(-w+1) > 1 .

As was the case for the Gamma integral in section 2, it is possible to further general-
ize the In argument appearing in formula (4). Suppose that we have an integral of the
form (4) except that the In term has the more general form ln(b td)m, where b is a positive
real number and d is any real number. This term can be expressed in the form

198

(ln(b) + dln(t))m

and by performing a binomial expansion, the integral is reduced to a sequence of integrals
of the form (4).

In summary, we can write a program which will express in closed form any definite
integral of the form

tw ln(b td)m exp(--u)

f ~dt
0 1 - exp(-vtO)

where
m is a nonnegative integer;

u, v, b are positive real numbers;
d is any real number;
s is a nonzero real number;

w is a complex number such that Re(> 1

The value of such an integral will be expressed in terms of the Gamma function, the gen-
eralized Zeta function (which can be expressed, in some cases, in terms of Polygamma
functions or the ordinary Zeta function), and their derivatives.

5.2. Examples
We present some examples of the above class of definite integrals. In the results

presented, simplifications known to the Maple system for the generalized Zeta function
and its derivatives evaluated at particular points have already been applied. Note that in
the Maple notation, Zeta(n,z) denotes the n t h derivative of the ordinary Zeta function,
while the generalized Zeta function (which doesn't appear explicitly in these examples due
to simplifications) would be denoted by zeta(n,zq) where n denotes the order of dif-
ferentiation.

199

inf inity
/ 2
S t exp(5 t) 56
--fi-it -- -- dt =- --- ---- + 7/4 Zeta(3)

I - exp(- 2 t) 27

0

Infinity
/

I exp(- 1/2 l/t) 2
-------- dt = 1/2 Pi

3
/ t ,1 - exp(- l/t))
0

infinity

/ 1/2
I exp(- t) 1/2

I----------------------- dt Pi Zeta(3/2)
I 1/4 1/2

/ t (I - exp(-t))
0

infinity
/

t ln(t) exp(- t)

-dt=
1 - exp(- 1/2 t)

0

2 2
4 (1 -gamma) (- + 1/6 Pi) + 4 Zeta(l, 2)- 4 (-1 +1/6 PI)ln(1/2)

Infinity
/ 1/2 1/2

I t exp(- 4 t) 251
----------------- dt 4 Zeta(3)-...

1/2 54
I iexp(- t

0

200

6. Conclusions
We have proposed a scheme for developing programs which are capable of expressing

broad classes of definite integrals in terms of special functions and their derivatives. The
technique is based on the integral definitions of various special functions, and generaliza-
tions obtained via differentiation and transformation of variables. Specifically in this
paper, we have shown how to develop programs for the closed-form evaluation of two gen-
eral classes of integrals involving exponentials and logarithms by exploiting the Gamma,
Polygamma, Zeta, and Generalized Zeta functions. Similarly one can exploit other special
functions to derive programs for other classes of definite integrals. The programs which
result from this approach are based on pattern matching, differentiation, and substitu-
tion, and they rely on the computer algebra system's knowledge of special functions.
These programs fit nicely into the integration package of a computer algebra system as a
"first line of attack" because they execute very quickly.

7. References

Abr66.
M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Nat. Bur.
Standards Appl. Math. Series 55, US Government Printing Office, Washington, D.C.
(1966). (5th printing)

Bro87.
Manuel Bronstein, Integration of Elementary Functions, University of California,
Berkeley, California (1987). (Ph.D. thesis)

Che85.
G. Cherry, Integration in Finite Terms with Special Functions: The Error Function,
Journal of Symbolic Computation 1 pp. 283-302 (Sept. 1085).

Che86.
G. Cherry, Integration in Finite Terms with Special Functions: The Logarithmic
Integral, SIAM J. of Computing 15 pp. 1-21 (Feb. 1086).

Gra65.
I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series, and Products,
Academic Press, New York (1065). (4th edition)

Kol85.
K.S. Kolbig, Explicit Evaluation of Certain Definite Integrals Involving Powers of
Logarithms, Journal of Symbolic Computation 1 pp. 109-114 (Mar. 1985).

Ris69.
R.H. Risch, The problem of integration in finite terms, Trans. Am. Math. Soc.
139 pp. 167-189 (1960).

Tra84.
Barry M. Trager, Integration of Algebraic Functions, Massachusetts Institute of
Technology, Cambridge, Mass. (1084). (Ph.D. thesis)

Wan7l.
P.S. Wang, Evaluation of Definite Integrals by Symbolic Manipulation, Mas-
sachusetts Institute of Technology, Cambridge, Mass. (1971). (Ph.D thesis).

201

Logic and Computation in MATHPERT:
An Expert System for Learning Mathematics

MICHAEL J. BEESON
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY, SAN JOSE, CA 95192
beeson@ucscc.ucsc.edu

Abstract'

MATHPERT (as in "Math Expert") is an expert system in mathematics explicitly de-
signed to support the learning of algebra, trigonometry, and first semester calculus. This
paper gives an overview of the design of MATHPERT and goes into detail about some
connections it has with automated theorem proving. These connections arise at the border-
line between logic and computation, which is to be found when computational "operators"
have logical side conditions that must be satisfied before they are applicable. The paper also
explains how MATHPERT maintains and uses an internal model of its user to produce in-
dividually tailored explanations, and how it dynamically generates individualized and helpful
error messages by comparing user errors to its own internal solution of the problem.

How MATHPERT is to be used in education, and the implications of learning envi-
ronments like MATHPERT for curriculum and pedagogy, are discussed in Beeson [1989a,
1989d, 1989e]. The details of the design of MATHPERT are discussed in Beeson [1989b].

Overview of MATHPERT

MATHP ERT is an expert system in that it is capable of solving (almost) all problems in
the stated subject domain internally and autonomously.2 In this respect it is similar to existing
computer algebra programs such as MAC SYMA, MAPLE, or Mathematica. However, it
differs from them in several respects, which are not only important but vitai for education.
The most basic of these differences are that MATHPERT is glass box and cognitively
faithful; these terms are explained in detail below, but roughly speaking, they mean that
MATHPERT produces not just "answers", but full step-by-step "solutions", with each
step intelligible to the user and justified on-screen, and does so not by secret high-powered
algorithms, but by the same methods students are supposed to use.

MATHPERT also incorporates a fairly sophisticated user model, and uses it to produce
step-by-step solutions at a level of detail custom-tailored to the knowledge of the individual
user.

MATHPERT is based on the analysis of the stated subject areas into several hundred
operators which can be applied to mathematical expressions. When MATHPERT is oper-
ating in "menu mode", the user chooses which operator to apply next. The computer carries
out the actual application of the operator. Operators which are "well-known" to the student,
according to the student mot'el, will be applied automatically, allowing the student to focus on

1This work partially suppc.-ced by NSF Grant Number IST-8511176.
2 The range of M AT H P E RT's capabilities is extensive. For example, it can solve problems in simplification,
including all kinds of exponents and radicals, factoring, equation solving including transcendental equations,
trig identities, limits, differentiation, and integration. It also includes graphics and numerical facilities which
will not be discussed at all in this paper.

the less well-known parts of the problem. At any time MATHPERT can be switched into
"automatic mode", in which it will not only apply the operator but choose it, thus generating
one (or more) steps of the solution automatically. The user can return to "menu mode" at
will.

MATHPERT accepts arbitrary symbolic problems from the user; for example, a stu-
dent might type in her homework. MATHPERT is designed for use with existing courses;
whether or not the class is officially using MATHPERT, an individual student should be
able to use MATHPERT beneficially. It is designed to be useful to students across the
spectrum from those needing remedial work to the very brightest students.

If MATHPERT were supplemented by a few high-powered algorithms, such as Risch-
Normann integration and routines for factoring arbitrary polynomials, which are not in the
undergraduate curriculum, it could compete with Mathematica, MACSYMA, MAPLE,
etc. It is explicitly designed for different purposes and as such should be considered comple-
mentary to such programs. MATHPERT cannot do integration or factorization beyond
the undergraduate curriculum, which these other programs certainly can. On the other hand,
it can give a six-line solution to the common-denominator problem 1/x + 1/y, explaining
every step (or a one-line solution for a more advanced student!), and it can do fairly compli-
cated calculus problems, such as calculating d/dxV/ directly from the definition of derivative,
showing and justifying every step on a separate line, and handling the logic correctly as well
as the symbolic computation. It is these capabilities which set MATHPERT apart from
Mathematica, MAPLE, etc.

Glass Box and Cognitively Faithful

An expert system is called glass box if you can see how it arrives at its answer. MATH-
PERT can print out the individual steps of its solution, with their justifications. (We use the
word "solution" to mean such a sequence of intelligible steps, whose last line is the "answer".)

An expert system is cognitively faithful if its own internal solutions correspond to the
solutions a human would produce. M ATHP ERT solves math problems in the way we teach
students to do, rather than using high-powered algorithms. Cognitive fidelity must be designed
for from the beginning, as the demand for cognitive fidelity complicates the construction of
an expert system considerably.3

MATHPERT also incorporates an elaborate internal user model, or student model (but
there may well be non-student users). This model contains (among other things), the infor-
mation concerning which of several hundred pieces of knowledge are, for this user, well known,
known, learning, or unknown. MATH PERT uses the model to tailor its output to the user.
A naive user will receive more detailed explanations than a sophisticated one, and in partic-
ular ways tailored to the exact knowledge of that user; a generally sophisticated user with
some gaps in her knowledge will still receive detailed explanations when her weak points are
involved. This use of the student model to modify output results in MATH P ERT's being
"cognitively faithful" not just to some idealized student, but to the particular, individual user
with whom it is dealing at the moment (provided, of course, that the internal user model is
accurate).

The Operator View of Mathernatics

3 The term glass box is in the literature, e.g. in Anderson [19881, Burton and Brown [1982] (where it is
credited to a 1977 memo of Goldstein and Papert). The term cognitive!y faithful has probably been used, too:
certainly the concept appears in Anderson [1988*1 and in Wenger 11987) (there under the name "psychological
plausibility").

203

MATHPERT depends on an analysis of its subject matter (algebra, trigonometry, and
elementary one-variable calculus) into several hundred operators which can be applied to
mathematical expressions. For example, one operator is called collect powers. It applies
to an expression x2 x0 and produces x". The key to the solution of a mathematical problem,
according to this view, consists in a correctly-chosen sequence of operators which are to be
applied to the input. The "solution" itself is the line-by-line record of the result of these
operator applications, together with their "justifications". The justifications are simply the
names (or formulas) describing the operators applied.

MATHPERT operates in two "modes": in menu mode, the user directs the course of
the developing solution by choosing the next operator from a system of menus. Since there
are several hundred operators, it would not be practical to require the student to remember
and type the names of the operators.4 The menu system has been designed to show only
those operators which might be relevant to the problem at hand, so that usually the student
does not have to leaf through all four hundred operators looking for the right one. Moreover,
even in menu mode, "well-known" operators will be applied automatically. Thus while doing
integration by parts, for example, you need normally not search for the operator -(-a) = a,
which should be well-known long before you are tackling integration by parts.

In automatic mode, MATHPERT will generate its own "ideal solution", step by step.
The user can switch at will between automatic and menu mode. Thus you can start in menu
mode, get stuck, switch to automatic mode for one or two steps for a hint; then, back on the
track, you can continue in menu mode. When you choose "finished", MATHPERT will
switch into automatic mode and see if you really are finished, according to its own internal
algorithm. If not it will supply the last steps of the problem. If you switch into automatic
mode and stay there, even at the beginning of the problem, MATHPERT will generate the
complete solution for you. Thus in principle you could just type in your homework and have
MATHPERT print out complete, step-by-step solutions to each problem.

Although automatic mode generates a single "ideal solution", menu mode permits "alternate
solution paths": any correct sequence of operators will be accepted. At any point you can
switch into automatic mode and MATHP ERT will successfully complete the problem from
that point, if possible.

The User Model in MATHPERT

The operators used by MATHPERT have been carefully chosen so as to correspond to
cognitive skills, that is, to identifiable "chunks" of knowledge which can be taught and learned.
Thus the "skills lattice" which is used in cognitive science to model learning can be directly
correlated to a user model based on the executable operators of M AT H P E RT. Each operator
is at the same time a procedure and a skill. Although this is important for the educational
design of MATHPERT, it is not very important for the logical and design issues raised in
this paper. From the present point of view, what is important is that we want the both the
program's choice of operators to execute, and the output of the individual operators, to be
different for different users (and appropriate to the user at hand).

MATHPERT's internal model of its user consists in recording, for each of some four
hundred operators, one of the values learning, known, well-known, or unknown. This section
will describe how the internal behavior and output of MATHP ERT is supposed to depend
on these values.

The values learning are used by individual operators. For example, we stated above that
the operator collect powers will produce output x'l on the expression x2z0 . This is not

4 Besides, students are generally poor typists. In MATHPERT, they have to type only to enter their

problem, not to solve it.

204

strictly true: if the student is still on record as "learning" this operator, it will produce instead
z2 +

0, after which the operator arithmetic will be automatically applied (if it is well-known)
to produce z 1i on the next line. A substantial fraction of MATHPERT's operators are
designed in this way, to produce more explicit versions of their output when certain operators
are still recorded as "learning".

The values well-known, on the other hand, are used not by individual operators, but by
the main MATHPERT system. Even in menu mode, well-known operators are applied
automatically. This lets the user concentrate on the task at hand, relieving her of the necessity
to search through the menus for an operator she learned two years ago and knows very well
how to use. However, these operators will still be visibly applied on the screen. This provides
the best of both worlds: the student does not have to think about applying -(-a) = a,
but also can see explicitly that it was applied. Otherwise, the application of two or three
well-known operators (invisibly) can result in confusion.

The values unknown are not explicitly used in MATH PERT, but are maintained to allow
for the possibility that tutorial software (running on top of MATHPERT) may want to
"grey out" unknown operators so that the student- can't see or use them. This will be used
particularly in the (not uncommon) case that one operator combines the skills represented by
several simpler operators. For example, the operator common denominator is broken into
five or six simpler operators intended for use while learning common denominators.

Evidently the user model is most useful if it is accurate. A program called DIAGNOSER
will initialize the student model interactively at the student's first serious session. D IAG-
N O S E R will generate problems dynamically, based on the student's previous responses; since
there are about four hundred operators, dynamic generation rather than a pre-stored test is
necessary. Closely related to DIAGNOSER will be a program called EVALUATOR
which will analyze the student's performance with MATH PERT and decide on the correct
updating of the user model. At present DIAGNOSER and EVALUATOR are still in the
design stage; they will be implemented in summer 1989.

MATHPERT can be used (and was used in Spring 1989), without DIAGNOSER and
EVALUATOR, if a human tutor (or the user herself) adjusts the student model appro-
priately to the level of the student in question. It need not be absolutely accurate to be
useful.

Symbolic Manipulation in MATHPERT : The Simplifier

For a detailed discussion of the design of MATHPERT, see Beeson 11989b]. Here we give
a only a sketch of the design of the symbolic computation engine.

Conceptually the symbolic manipulation part of MATHPERT can be regarded as having
two main parts: the individual operators, and the control structure. The individual operators
are the repositofy of knowledge of specific mathematical facts and simple techniques. Each
operator is meant to generate one line of a solution. The choice of what operators to apply,
and in what order to apply them, is made by the control structure. In menu mode, the control
structure is simple: the menu choices directly link to the operators, and there is no automatic
control. (But even in menu mode, MATHPERT shifts to auto mode after each menu choice,
in order to automatically apply the well-known operators.)

In automatic mode, however, a sophisticated control structure is required. For want of a
better name, we call the control structure the "simplifier".

Form of the Operators.
Many of the operators might be expressed as rewrite rules, that is, they can be applied

matching the left-hand side of the rule- to an expression with free (meta)variables and re-
placing the expression with the right-hand side of the rule (under the same bindings of the

205

metavariables). On the other hand, many operators cannot be so construed. A simple exam-
ple is the rule collect powers mentioned above; it has to collect powers of the same variable
x even if (a) there are many factors with powers of x, and (b) they are separated by other
factors. Moreover, the output involves adding the exponents, not just placing a plus sign be-
tween them. (Unless the user is just learning this operator, in which case it does just place a
plus sign between the exponents.) MAT HP ERT allows operators to be defined by arbitrary
programs.

The output of an operator is a triple [Next, Yellow,Reason]. The expression Next is the
mathematical output, the new expression. The expression Yellow is a copy of Next with
some subterms (often the entire term Next) labelled "yellow", so that they can be displayed
in a different color to emphasize where the action took place. The third paxt, Reason, is a
"justification" that appears on the right-hand portion of the screen to justify this step in the
computation. During ordinary operation of the simplifier, each application of an operator pro-
duces output on the screen consisting of Yellow at the left (in white with yellow highlighting)
and Reason at the right (in green).

For the benefit of any readers who may not have seen MATHPERT live on the screen,
let me repeat that the output is a sequence of lines. Each line consists of a mathematical
expression together with a "justification". Each line is obtained from the line above by the
application of an operator to some part of the line above.6 The use of Yellow is to highlight
the part of the expression that has changed.

Control Parameters.
The name "simplifier" is slightly misleading, however, because the behavior of the simplifier

itself can be radically different, depending on the type of problem being solved, as well as on
the user model. It is well-known, for example, that polynomials have two distinct "normal
forms": factored and expanded. For example, (x + 1)3 and X3 + 3X2 + 3Z + 1. We thus
obtain four distinct possible "normal forms" for rational functions, according as whether the
numerator and denominator are to be expanded or factored. In addition there is a fifth normal
form for rational functions as a sum of rational functions (partial fraction form). Simplification
in mathematics is not as simple as in logic! we can't just specify the normal form and the
reduction rules.

This problem is attacked in MATHPERT by maintaining certain "control parameters"
that affect the operation of the simplifier. For example, there is one parameter that causes
numerators to be expanded (or factored or left alone); one parameter that affects denominators
similarly; one parameter that determines whether negative exponents should be converted to
positive exponents in the denominator; one parameter that determines when floating-point
numbers should be converted to rational fractions, etc. The total number of such parameters
is in the vicinity of twenty. One can speak of the "behavior of the simplifier" on a given
problem only relative to the settings of these control parameters. Note that the user does not
ever have to adjust or even know about these parameters.6

When the user entera MATHPERT, she must choose what type of problem she intends
to solve. The internal effect of this choice is to set certain control parameters. For example,
choosing Factor will set the simplifier to factor numerators and denominators (or polynomials
standing alone), and to expand only products and powers that are part of sums (in hope of
additive cancellation). A more subtle example concerns the meaning of variables: each free

5A few operators, however, are 'jumpers" that actually retrieve previous parts of the computation and use
them; for example, when solving several simultaneous equations, you can work on one for a while and then
select another.
eThere is a "control panel" through which the user can, if desired, adjust the control parameters, although
this is not normally necessary. For example, you might want to flne-tune the parameters controlling when

decimals will be converted to rational numbers and vice-versa.

206

variable is internally considered cither existentially or universally quantified. If the problem
type is "solve equatione", then the variable or variables to be solved for are considered exis-
tentially quantified. This will prevent, for example, differentiating both sides of an equation
with respect to such a variable. (Otherwise you can differentiate x = 1 with respect to x and
derive 1 = 0; note that if x is a universally quantified variable, it is perfectly legitimate to
differentiate x = 1 with respect to t, or even x.)

Setting the control parameters is the only internal effect of the choice of problem type. As
soon as the control parameters are set, the problem is passed to the simplifier, no matter what
the initial choice of problem type may be.

Data Types in MATHPERT.
The principal data type in MATHPERT is the term or expression, which has the syntax

term functor(term {.term})
term :: atom
term ::= number
functor ::=,atom
functor ::= symbol

These are in some sense "meta-types". MATH PERT internally keeps track of the types of
its "object variables", which may be integer, real, or complex. This is done by using ordinary
expressions of the form n: integer. These expressions are rarely seen by the user, but
sometimes they appear in the "assumption window", e.g. when solving the equation sin x = 0
we get x - nir with the assumption n: integer.

Numbers can be (at the meta-level, i.e. as seen by the programmer), real or complex
integers, rationals, or floating-point numbers. Internally a distinction is also made between
"ordinary" integers and "bignums" (requiring more than one digit base 216). Similarly, there
are ordinary rationals and "bigrats". (At present there are no "bigfloats": floating point
precision is limited to fifteen decimal places.)

An expression can be regarded as a tree, with the functor at the root and the arguments
at the daughter nodes. At the leaves of the tree are numbers or symbolic atoms. The tree
so constructed is known as the expression tree. Subexpressions of the an expression can be
uniquely specified by giving the node of the expression tree at which they occur. 7

Expression Tree Traversal.
The simplifier works by traversing the expression tree in depth-first fashion, applying oper-

ators to nodes as it goes. This design decision only begins to specify the simplifier, however.
It leaves several important issues undecided.

Foremost among these issues is the following: When we first visit a node of the expression
tree, we have not yet simplified the arguments of the term. Should we then apply what
operators we can, or should we wait until we have been down the tree (i.e., have simplified
the arguments) and only then apply the operators that apply at this node?

A similar issue arises in logic, specifically in A-calculus. Choosing to simplify the arguments
first (an inside-first strategy) corresponds to call-by-value reduction in A-calculus, while call-
by-name results from simplifying arguments only later.

In the case of mathematics, there is no clearcut preference. Examples can be found where
inside-first reduction is wrong: consider A - A, where A is a complicated expression requiring
a lot of simplification. It looks quite silly to simplify A at length only to cancel out the result.
On the other hand, often inside-first is correct: generally speaking, we want to simplify the
arguments of trig functions before attempting to apply trig identities. Reflection reveals that
7 Mathematica uses the same natural device. In MAT HPERT, however, the specification of expressions
by nodes is never done by the user, since MATHP ERT was designed to the specification that it require
nothing more of the user than a traditional textbook.

207

in most cases, there are certain simple operators associated with each functor, such that we
want to apply these operators before simplifying the arguments, if possible, but that most
of the operators applicable at a given node should be applied only after the arguments are
simplified. For example, both additive and multiplicative cancel operators should be used
(if possible) without simplifying the arguments first; and it is convenient to cancel a double
minus sign as soon as you see it, etc. The issue of the order of application of operators came
to the fore in the design of MATHPERT because of the demand for cognitive fidelity. If all
we needed to see were the answer, it would not matter much whether we simplify A at length
before cancelling; efficiency would be the only concern. As it is, since we demand cognitive
fidelity of MATHP ERT, it is important to get the order of application of operators right,
in the sense that solutions produced by MATHPERT "look natural".

Technically, this is accomplished by considering each operator as associated to one (or in
some cases more than one) functor. For example, cancel is associated to the operator '/'.
When the expression tree is traversed, only operators associated with the functor at a given
node will be considered.8 Each operator is either "pre-associated" or "post-associated" with
the functor. Those operators that are pre-associated are applied (if possible) on the way down
the expression tree. The post-associated operators are applied on the way back up, i.e. after
the arguments have been simplified. Of course the tree changes as it is traversed, thanks to
the applications of operators.

This description of the simplifier is conceptually correct but is seriously incomplete. Space
limitations here force us to refer the reader to Beeson 11989b] for a discussion of important
issue- ,.ffecting the design of the simplifier, and a discussion of issues of efficiency in the
s" er. Here we have space for only one such issue:

Contextual Dependence of Operators.
In certain cases, it seems that the choice of which operator to apply (or whether to apply

a given operator) depends not only upon the expression to which it applies, but also on the
context in which that expref;sion occurs. A simple example is the binomial theorem: one
feels that by default (i.e. unless the control parameters are set to expand everything), one
should not expand (X + y) 7 . On the other hand, if (x + y) 7 is a term in a summand, such as
(X-+y) 7 - x7 , the choice is less clear. For another example, there are three operators which can
be applied to cos(2x), yielding results 1 - 2 sin 2 a, cos 2 x- sin 2 x, and 2 cos 2 x- 1, respectively.
The choice of which one to use depends heavily on the context of the occurrence of cos 2z;
generally speaking there is one and only one correct choice.

The contextual dependence of some operators seems to speak against the basic design of
traversing the expression tree and applying operators associated with certain nodes. However,
most examples of apparently context-dependent operators depend only on the expression tree
one level up, and can simply be associated to the functor at that level, e.g. expanding powers
can be associated to the 'Y' one level above the term to be expanded. The remaining very
few truly context-dependent operators simply fetch and examine the context in which their
operand occurs. This leaves the control mechanism free to pursue a simple tree traversal.
To put it in slightly different words: the deviations from pure expression tree traversal are
not considered part of the control structure, but as actions performed by the operators being
controlled.

Still, not all the work can be pushed off on the operators, because the control structure
still must settle the competing claims of several applicable operators, only one of which is the
correct one. (Consider the example of the three rules for cos 2x.) This is handled in MATH-
PERT by allowing an operator to be passed to the simplifier with a "condition" attached.

$In reality MATHP ERT examines the functors at the daughter node as well when selecting operators to
try. The selection process is made efficient by the use of a b-tree.

208

Instead of a symbolic name Oplame, the simplifier gets a pair (OpNameConditiQn). In this
case it is supposed to determine whether the Context (the current line of the computation)
satisfies Condition, and only apply OpName in this case. This is the control mechanism by
which the major work of context-checking (the verification of Condition) is pushed off on
the individual operators.

Indirect Uses of the Simplifier in MATHPERT

The obvious use of the simplifier in MATHP ERT is to generate ideal solutions of problems
when MATH PERT is in automatic mode. However, there are several other uses as well.

Automatic Application of Well-Known Operators.
When MATHPERT is operating in menu mode, the user directs the computation by

choosing the next operator to be applied. After that operator is applied, MATHPERT
shifts momentarily to automatic mode, and the simplifier is run on the new expression, but
with only the "well-known" operators allowed. This is accomplished by temporarily "inhibit-
ing" all the other operators; the simplifier will not choose an inhibited operator. The result of
this is that zero, one, or even several lines of the computation may be generated automatically,
if they represent steps well-known to the user. This makes MATH PERT rather pleasant to
use: you can focus on the steps that are new to you. While doing integration by parts, if your
algebra is well-known, you won't have to search through the menus for operators to accomplish
simple algebraic manipulations. As remarked above, the user model affects MATHP ERT's
operation in two ways: the well-known operators are applied automatically, and the "learning"
operators affect the specific lines of output produced (both by themselves and by other oper-
ators). The latter effect has to be "hard coded" in the operators themselves; but the former
is accomplished systematically by using auto mode with non-well-known operators inhibited.

Dynamic Generation of Error Messages.
A third use of the simplifier is for the dynamic generation of appropriate and helpful error

messages. With about 500 operators in MATHPERT, there are about 250,000 pairs of
operators. This makes the impossibility of providing pre-canned error messages patently
obvious. Experience with MAT H P E RT shows, however, that there are three main categories
of errors:

(1) Errors in which the wrong key was pressed by mistake.
(2) Errors in which the user's plan is basically correct, but she has skipped a step.
(3) Errors in which the user did not know the correct thing to do.

The user of MATHPERT who makes an error of types (1) or (3) has a chance of getting
one of a couple hundred canned error messages, if the author has has seen that error before
and canned a message for it. But most of the time she will get Sorry, I can't do anything with
that operator.

The user who makes an error of type (2), however, will get an appropriate and helpful
message. Let me give an example. Suppose we are working the common-denominator problem
I/X + 1/y and we have got as far as

ly lx
- +

zy y

A natural error is to choose Add Fractions a/c+b/c = (a+b)/c at that point. MATHPERT
will then generate the error message:

That operator almost applies here, but you must first prepare the way by using 'multiply
fractions' (a/b)(c/d) = ac/bd and 'order factors'.

209

This message gives the user direct advice on how to correct the error. MATHPERT
creates such messages by the following mechanism: when an inapplicable operator is chosen,
it generates the next four steps of its own "ideal" internal solution. It then looks to see if the
s adent's choice of operator is one of the four operators involved. If so, it assumes it is dealing
with an error of type (2), and generates an appropriate message as illustrated above, using
the information from the internal solution.

Logic and Computation

The author has long been interested in the interplay between logic and computation in
mathematics. Beeson 11988) presents some general ideas which would make good background
reading.

Operators with Side Conditions.
A side condition is a condition that must be true before an operator can be applied. For

example, the operator (=/)2 - x is only valid if x > 0. Of course, in simple cases when the
expression matched to x is just a number, we can simply compute whether the condition is or
isn't satisfied. But what should we do when x is not a number?

MATHPERT's answer, which we claim is cognitively faithful, is as follows: When an
operator is applicable, but it has a-side condition, we proceed as follows:

(1) First attempt to infer the side condition. This attempt at inference will include numerical
computation but will also include symbolic computation.

bu(2) If this fails, then attempt to refute the condition, for example by numerical computation,
but again any relevant operators may -be applied.

(3) If this too fails, then assume the condition.
Let's see how this works in practice. Say we want to simplify (Vr- +h) 2 - (vN/2. The

cbnditions x + h _> 0 and z > 0 can't be inferred or refuted, so they are assumed, and the
operator is applied twice to yield x + h - x. Fine, but what has become of the assumptions?
A record has been kept of them, and they are on display in a special "assumption window",
where the user can peruse the current assumptions if desired.

Here we have crossed the boundary line from computation to logic: now we have a hypo-
thetical result, an implication, not just the result of a computation.

When we have finished the main computation, we may select one of the assumptions, and
try to simplify or even to infer it. There turns out to be no way to fence computation off from
logic:

* We need operators with side conditions to do calculus.
* We can't handle operators with side conditions properly without a full-blown logical

system.

Partial Terms in MATHPERT.
In mathematics we have to deal with partial functions, i.e. functions whose domain is

hot all of the reals. Similarly, there are other expressions in calculus which do not always
denote values, notably terms involving limits. The correct automatic manipulation of such
expressions necessarily involves some sort of logical apparatus. 0

The author has dealt in the abstract with a "Logic of Partial Terms" (see Beeson (19861
or 11985], p. 97). This abstract theory LPT has been built into the logical machinery of
MATHPERT. Thus one has expressions of the form defined(Exp) for every expression

OMathematica lacks such a logical apparatus, which is the fundamental reason why it doesn't handle operators
with side conditions properly (see Wolfram 11988), p. 417).

210

F. These expressions first arise in calculus, when limit problems are considered. Consider a
problem like

lir

There is an operator lim.quotient, as follows:

lir = imh. U
h-.av limh-V v

However, this operator has a side condition, namely that two limits on the right side are
defined, and the one in the denominator is different from zero. In LPT, this can be expressed
using the propositions just discussed. Explicitly, in the internal form used by MATH PERT,
the side condition in the above example takes the form of the conjunction of the three propo-
sitions:

defined(lim(h->O,sqrt(x+h) + (-sqrt(x))))
defined(lim(h->O.sqrt(x+(-h)) + (-sqrt(x))))
lim(h->O,sqrt(x+(-h)) + (-sqrt(x))) != 0

However, the beauty of the logic LPT is that we do not have to explicitly consider the first
two of these, as an equality t = s means that t and s are both defined and equal. The atomic
proposition t I = s means that t and s are both defined and unequal. With these ideas built
into the logical system, the only remaining side condition is the third one, that the limit of
the denominator is not zero.

When MATHPERT's simplifier is given the problem, it generates this side condition,
and then attempts to "check" the side condition according to the algorithm given above, i.e.
"check" means try to infer, refute, or assume, in that order. But the attempted inference is
only allowed limited means: logical and inequality operators. In particular limit operations
are not allowed, so the attempt to check the side condition does not result in evaluation of
the limits. Since the side condition can be neither inferred nor refuted, it is assumed. The
operator is then applied, and the computation can proceed.

In this example, however, the various limit rules (after generating more assumptions) lead
to an expression 0/0, which MATHPERT recognizes as undefined. This stops the simplifier
from continuing to apply operators to the expression, and sends it back to check the assump-
tions still outstanding. Previously, when it tried to check the assumption that the limit of the
denominator was zero, it failed, because the check algorithm doesn't include evaluating limits.
But now, the limit has been evaluated. MATHPERT's simplifier has taken care to keep
track of the results of evaluation of subterms, so that check now succeeds in refuting this side
condition. The computation therefore backtracks to the place where the rule for the limit of a
quotient was applied, and another MATHPERT searches for another applicable operator.
It so happens there is one: L'Hpital's rule. Moreover, the side condition for L'Hpital's rule
can now be inferred, since the evaluation of the subterms has already taken place. After this
the computation proceeds smoothly.

The most difficult part of the above to achieve mechanically is the correct recording and
retention of results about the evaluation of subters. In what we feel is a quite cognitively
faithful mechanism, MATHPERT actually does not record this information as it is com-
puted, but extracts it from the record of the computation when it is needed, by tracing
subterms backwards to their predecessors in the computation.

Bound Variables in MATHPERT.
In the logico-mathematical system underlying MATHPERT, there are several ways of

binding variables. There are, for example, integrals, derivatives, limits, and indexed sums.

211

There are also terms for n-th derivatives, and for definite integrals. These terms are the
direct analogue of terms that appear in every calculus textbook. We also make use of some
terms (internally) that do not appear in books. For example, definedin.nbhd (Exp, X, A)
expresses that the expression Exp, considered as a function of the variable X is defined in
a neighborhood of A. To take a specific example: defined-in-nbhd(sqrtCX),X.1) is true
but definedin.nbhd(sqrt(X).X,0) is false. In this expression, the variable X is bound.
By this (and other similar) devices, MATHPERT avoids the necessity of using the A-
calculus or some equivalent device for constructing names of functions. 10 As a matter of fact,
MATHPERT knows (internally) about A-calculus and can be used to study it, but this has
been done only for the author's amusement, and not because it is needed. The quantifiers all
and exists are the other functors which might bind variables, but MATHPERT does not
use quantifiers: its logic is quantifier-free.

Interaction of Bound Variables and Operators.
At the boundary between logic and computation we find interesting interactions between

bound variables and operators with side conditions. An interesting example where these
interactions arise is the following problem:

Calculate A directly from the definition of the derivative.

A few steps into the computation, we have an expression whose numerator is

I i M((V'XT-) 2 _ (VX) 2).
h-0O

We want to apply the operator (Vr/ 2 = x if x > 0. If it weren't for the fact that h is
bound by the functor lim, we would generate the assumption x + h> 0. It would be incorrect,
however, to generate an assumption containing h free. Hence something in the mechanisms
described above requires modification.

In fact two modifications are necessary. One, the side condition of the operator in question
is not really x > 0: it is instead def ined(sqrt(X)) (in MATHPERT's notation) (or v/X .
for those familiar with LPT's notation). Normally this condition reduces immediately (by the
MATHPERT operator called internally domain-sqrt) to the proposition X > 0. However,
in case the expression X contains bound variables, the reduction is not so simple. The second
modification to check concerns the nature of the reductions applicable to such propositions.

It seems that each functor that can bind variables has to be treated individually. Suppose
we have a term defined(sqrt CX)) in which the expression X contains a variable h bound by
a limit operator lim(h->a). Then the proposition defined(sqrt(X)) should reduce to
definedinnbhd(sqrtX) ,h.a). This reduction is accomplished by a certain MATHPERT
operator. Incidentally, this operator is another example of a context-dependent operator.

The mechanical apparatus described so far is sufficient to carry out the solution of the
problem stated above, computing the derivative of 1x directly from the definition of deriva-
tive. It comes out correctly to be differentiable only when z > 0, since the proposition
defined-n.nbhd(sqrt (x+h) ?h,0) reduces to x+O > 0. This last reduction is accomplished
by the MATHPERT operator called internally open-domain-sqrt.

Implicit in the above remarks is a point that deserves to be made explicit: knowledge of
the proposition defining the domains of each of the traditional mathematical functions, and of
the proposition defining the interior of these domains, is expected of serious calculus students,
and is built into MATHPERT. Although the twentieth-century tradition has wrapped the

1OMATHPERT is cognitively faithful in this respect: you don't see -calculus in math books. In essence,

this is achieved by keeping all names of functions in normal form.

212

central role of the defining propositions for the domain of functions in a smokescreen of set-
theoretic notation, in fact sets have nothing to do with it; they are just a detour on the direct
route from the question whether a function is defined to the proposition whose evaluation
will answer that question. The decline of set theory will be one of the concomitants of the
more concrete view of mathematics fostered by the widespread availability of unprecedented
computational power; particularly in places like this one where set theory was making no real
contribution.

Gentzen's Proof Theory.
In Gentzen's proof theory, assumptions are represented as the antecedent of a "sequent",

or expression of the form Assumption-List => Proposition. Formal proofs are described
by trees labelled with sequents, such that each node corresponds to an application of one of
the rules of inference given by Gentzen. (The conclusions are written below the premises.)
It is an interesting question (for a logician turned programmer, at least) exactly what logical
formalism is required to suppdrt trigonometry, algebra, and calculus.

To support MATHPERT, we need only a quantifier-free formalism, although we do re-
quire several variable-binding functors as described above. We need sequents of the form
Assumption-List => Proposition, where Proposition is an expression (including an equa-
tion or inequality as a special case of expression), and the members of Assumption-List are
expressions too.

Note that, following Church (and Prolog), the propositions are treated just like any other
expressions. This is in contrast to traditional logical systems where an expression a = b is
considered a "formula" and is treated differently from an expression a + b.

We can view the process of solving a problem as a process of constructing a proof in a
Gentzen-like system. For example, we have the proof fragment

vf- r E[xJ
x> o, r Ex]

Note that applications of operators take us down the proof tree, i.e. they are a form of
forward inference. The elaborate control apparatus described above for selecting appropriate
operators can thus be thought of as a control structure for guiding forward inference in an
otherwise far-too-vast search space.

Connections with Automated Deduction

It has been a long-standing problem in automated deduction to find good ways of combining
symbolic computation with logical deduction. MATHPERT had to do so (albeit at an
elementary level) just to support automatic problem-solving in calculus.

The author has also written a theorem-proving program GENTZEN based on Gentzen's
proof theory. This program embodies an algorithm which constructs proof tree "backwards"
from the concluding sequent. An extremely important point is that, although the proof is
constructed by proceeding from the conclusions to the hypotheses ("upwards" in the proof
tree), part of the conclusion is "left blank" in the beginning and "filled in" as we go up
the tree. The technical device used to accomplish this is unification, using Prolog variables
(metavariables) to range over terms of the formal language. Beeson (1989c] describes the
program in detail. Although it constructs the proof tree from the bottom up, the algorithm
is a combination of what intuitively one would call "forward" and "backward" inferences.

The reason for bringing up GENTZEN here is that the simplification algorithm em-
ployed in MATHPERT meshes nicely with the theorem-proving algorithm employed in

213

GENTZEN. The two programs use compatible language and concepts. The theoretical
framework can be briefly described: Gentzen sequents and rules, extended so as to incorpo-
rate the logic of partial terms, and new variable binding operators, and extended (following
Church) to treat propositions as ordinary terms. The author plans to merge the two programs
at some point in the future. The algorithm of GENTZEN will be seen to be composed of cer-
tain "logical" operators on sequents. The combined algorithm will contain both GENT ZEN
and MATHPERT, as well as some rules that go beyond either, such as the rules for proof
by mathematical induction.

References

Anderson, John R. 119881, The Expert Module, in: Polson, M. C., and Richardson, J. J.
(eds.), Foundations of Intelligent Tutoring Systems, pp. 21-54, Erlbaum, Hillsdale, N. J. (1988).

Beeson, M. 11985], Foundations of Constructive Mathematics: Metamathematical Studies,
Springer-Verlag, Berlin/ Heidelberg/ New York (1985).

Beeson, M. [1986] Proving Programs and Programming Proofs, in: Marcus, Dorn, and Wein-
gartner (eds.), Logic, Methodology, and Philosophy of Science VII, pp. 51-82, North-Holland,
Amsterdam (1986).

Beeson, M. 11988] Computerizing Mathematics: Logic and Computation, in: Herken, R.
(ed.), The Universal Turing Machine: A Half-Century Survey, pp. 191-226, Oxford University
Press, Oxford/ New York (1988).

Beeson, M. 11989a], Learning Mathematics with MATHPERT, to appear.

Beeson, M. 11989b], The Design of MATHPERT: An Expert System for Learning Math-
ematics, to appear.

Beeson, M. [1989c], Some Applications of Gentzen's Proof Theory in Automated Deduction,
submitted to Journal of Automated Reasoning.

Beeson, M. 11989d], The User Model in MATHPERT: An Expert System for Learning
Mathematics, to appear in Proceedings of the Conference on Artificial Intelligence and Edu-
cation, Amsterdam, May 1989.

Beeson, M. [1989e], MATHP ERT: An Expert System for Learning Mathematics, in: Pro-
ceedings of the Conference on Technology in Collegiate Mathematics Education, Columbus,
Ohio, November 1988, Addison-Wesley (to appear).

Burton, R. R., and Brown, J. S. 119821, An investigation of computer coaching for informal
learning activities, in Sleeman and Brown 19821, pp. 79-98.

Sleeman, D., and Brown, J. S. [1982], (eds.), Intelligent Tutoring Systems, Academic Press,
London/ Orlando, Fla. (1982).

Wenger, E. 11987], Artificial Intelligence and Tutoring Systems, Kaufmann, Los Altos, Calif.
(1987).

Wolfram, S. [1988], Mathematica: A System for Doing Mathematics by Computer, Addison-
Wesley, Redwood City, Calif. (1988).

214

Representation of Inference in Computer Algebra
Systems with Applications to Intelligent Tutoring*

Tryg A. Ager
R. A. Ravaglia

Institute for Mathematical Studies in the Social Sciences
Stanford University

Sam Dooley t

University of California, Berkeley

Abstract. Presently computer algebra systems share with calculators the property that a se-
quence of computations is not a unified computational sequence, thereby allowing fallacies to
occur. We argue that if computer algebra systems operate in a framework of strict mathe-
matical proof, fallacies are eliminated. We show that this is possible in a working interactive
system, REQD. We explain why computational algebra, done under the strict constraints of
proof, is relevant to uses of computer algebra systems in instruction.

1 Introduction

In their recent book [2] Davenport, Siret and 'Journier state that computer algebra systems
should meet two requirements:

1. Provide pre-programmed commands to perform wearisome calculations.

2. Provide a programming language to define extensions or enlargements of the original set
of pre-programmed commands.

Recently much attention has been given to the use of computer algebra systems in instruction.
We are involved in such a project ourselves [8]. In this paper we wish Io suggest that, especially
in instructional situations, there should be a third requirement on computer algebra systems:

3. Represent mathematical inferences.

The essence of mathematics is proof. All advanced mathematics instruction depends on
proof to present, justify, and apply mathematical concepts. Proof is the structure of mathe-
matical discourse, and the bottom line of acceptability in mathematical problem solving. In
an instructional context, it would be desirable to constrain student interactions to the straight
and narrow road of proof and detect fallacious reasoning in a pedagogically effective and timely
way.

*Rsearch supportcd by the National Science Foundation Grants MDR-855.50596 and MDR-87-51523 at Stan-
ford University and the Defense Advanced Research Projects Agency (1)oD), monitored by thc Space and Naval
Warfare Systems Command under Contract N00039.88-C-0292 at Ihe University of California at Berkeley.

ISupported under a National Science Foundation Graduate Fellowship.

In contrast, at this point in their development, computer algebra systems are designed as
tools, and usually are supplied cavea emptor. This means that just as with more concrete
tools like hammers-which can drive a nail or crush your thumb -computer algebra tools can
perform elegant computations, or lead to contradictions.

Consider the following "proof"-an epitome of the divide-by-zero fallacies:

Assume a = 0 (1)
Divide by a a/a = O/a (2)
Simplify I = 0 (3)

This is a trivial example of a nontrivial problem. We know from [5] that zero equivalence is
in general unsolvable. So we cannot detect division by zero in a general and algorithmic way.

But there is a different approach: we can reliably audit the operations or steps of inference
that lead from (1) to the contradiction (3). Since a requirement of the division operation is
that the divisor is not zero, we can add to an audit trail when division is performed. Thus

Assume a = 0 (1)
Divide by a a/a = O/a provided a 9 0 (2')
Simplify 1 = 0 provided a -6 0 (3')

Now a summary of this audited proof in the if... then idiom would be: If a = 0 then 1 = 0,
provided a 9 0. So some term b for which zero equivalence is undetermined, either for practical
or theoretical reasons, could be used in an audited proof as follows:

Assume a=0 (I)
Divide by b a/b = O/b provided b 6 0 (2")
Simplify a/b = 0 provided b 5 0 (3")

For this proof, where we don't know if b is zero, auditing is the only protection we have.
Reversing the auditing metaphor, the conclusion is mortgaged to the proposition that b 0 0; a
subsequent audit might show it was a bad loan. Fateman [4] discusses the auditing of symbolic
computation along with several other options for dealing with computer algebra fallacies.

We call the provisos on divisors and other entries in such audit trails restrictions. The
idea we want to develop in this paper is that keeping track of restrictions is a proper strategy
for satisfying the third requirement on computer algebra systems. We will look at one other
example of inference, then turn to a precise definition of restrictions, and conclude by showing
how keeping track of restrictions leads to some nice results in justfying reasoning involving
limit computations.

To broaden the intuitive idea of restrictions, consider

Define a function f(x) = (-2)? (,I)
Differentiate f'(x) = (-2)' log(-2) (5)

Both Reduce and Macsyma (caveat emptor. let this happen. As an inference it would be
expressed

If f is (-2)l then f'(z) is (-2) log(-2). (6)

As an audited inference it would be expressed

If f is (-2)- then f'(z) is (-2)x log(-2), provided f is differentiable. (7)

Note that statement (6) is false, whereas the restricted stalement (7) is vacuously true because
in this case f is nowhere differentiable.

216

I ~~I---

With others at Stanford [8] we have developed a prototype system that satisfies the re-
quirement to represent proofs for a subset of the formulas and operations involved in the
elementary differential calculus of univariate closed-form functions. Admittedly, not a large
fragment of mathematics, but its complexity is sufficient to bring out interesting issues in rep-
resenting inference in computer algcbra s~stems. This system is called Restricted Equational
Derivations (REQD). REQD is part of a larger project to construct a complete teaching sys-
tem for elementary calculus with an embedded computer algebra system. The entire project
involves a major user interface effort and more relevant to this paper, an effort to nd ab-
stract formulations of the differential and integral calculus of univariate functions by reference
to which the inferences permitted by REQD can he proven to be consistent.

To illustrate the idea of interactive RfEQI) proofs we show actual REQDs for the two
motivating examples. One succeeds; the other fails. Annotated user commanls are on lines
preceeded by the calc> prompt.

Division by zero example:

calc> intro~duco] a = 0
1. a=0
calc> I D[ivide] E[quals by equals] a
2. a/a = O/a

provided that a is not zero.
calc> 2 [simplify]

2. 1=0
provided that a is not zero.

Differentiability example:

calc> define f(x) = (-2) ** x
x

1. F(x) = (-2)

provided that x is rational with odd denominator.
calc> 1 diff~erentiate with respect to] x

x
The function F(x) = (-2) is not differentiable because
we cannot find an open interval on which it is defined,

and therefore none on which it is continuous.

For the purposes of this paper, we will describe a fragment of REQI) that consists of the
rational functions, addition, subtraction, multiplication, and division. We omit components of

REQD related to differentiation, the use of hypotheses, and algebraic operations that introduce
new terms into the derivation. Because we will not include contingent equalities (relations such
as x + y = c) we can avoid, in this brief paper, complications associated with the treatment
of implicit existential quantification.

We will allow exponentiation and trigonometric functions. Proofs will be built up from
function definitions, transformations authorized b, algebraic or trigonometric identities, and
inferences authorized by definitions or theorems from the theory of limits of univariate func-
tions. Think of this system as employed in an instructional setting in a first-year calculus
course. Think of it as illustrating an approach to satisfying requirement (3) on computer
algebra systems. Remember, however, that it is a severely diminished system, developed in
detail to bring out issues related to the representation of proof in computer algebra systems.

217

2 Definitions

lere are some definitions that describe the structure of proofs in REQD:

1. REQD Derivation:

An REQD derivation is a series of steps each of which is either an equation introduction
step or a consequence of one or more previous steps by an REQD inference rule.

2. REQD Step:

An REQD step is a pair (E, R) consisting of an equation E and a (possibly empty)
set of restrictions /R. We will refer to the ith step in an RTEQD derivation by the
pair (Ei, Ri). In an actual implementation, an lIIQl) step ordinarily would contain
additional pedagogical and nonlogical information, such as the print representation, line
citation, the justification of the step, etc. In this presentation, however, we concentrate
on the minimal logical content of steps.

3. Equation Introduction Step:

An equation introduction step is a step that is not a consequence of any other step in
an REQD. There are several kinds of introduction steps including axioms, theorems,
definitions, and assumptions. Logically, introduction steps stand on their own and are
self-justifying; although the rationale for assumptions is special. In this brief develop-
ment, introduction steps will be restricted to definitions of univariate functions.

4. Transformation Step (Inference Rule):

A transformation creates a new step S, froni one or more previous steps {St, ... , Ski,
called the premises of the rule, each of which is an equation-restriction pair as defined
above. The equation E of the new step is generated by a rewrite rule from the previous
equations {EJ,..., Ek}. The restriction set l,, of the new step is generated by a re-
striction transformation from the previous rest.riction sets { ... , Rk}. Thus an REQD
inference rule is specified by an equational rewrite rule and a restriction transformation.

The mathematical content of any REQI) system is determined by its set of introduc-
tion and transformation rules. As will become apparent., the equational rewrite rules
are purely syntactic, but the restriction transformations are subtle and mathematically
substantive. The correctness of any REQI) rule depends on completely and correctly
implementing the substantive content of the underlying mathematical theorems. This
always turns out to be mainly a problem in the transformation of restrictions.

5. Categorical REQD:

An REQD is categorical if its introduction rules include only axioms, theorems, or
definitions. Categorical REQDS do riot have hypotheses or assumptions, and thus are
quite weak in terms of applicability, but are useful for isolating certain mathematical
phenomena such as taking limits. The abbreviated system we use in this paper to
illustrate the behavior of REQDs, is categorical because its only introduction rule is
univariate function definition.

6. Restrictions:

The restrictions R,, on the nth REQD step are boolean predicates ri(t),..., rj(t) which
are applied to atomic terms that occur in lhe equation of step n or in the equations of

218

Division (cul j o(ex , _. i,.'pr2
Square Roots (expri) expri > 0
Natural Logarithms log(expri) ex prI > 0
General Logarithms log(exr,,) (eXpr 2) expr1 > 0 A

cXpr 0 I A
expr2 > 0

Exponentiation (ezpr)("F '') expr, > 0 V
expr, = 0 A expr2 > 0 V

exprI < 0 A expr2 E 0
Trigonometric tan(exprl) cos(Cepri) 0 0
Functions cot(expr,) sinQ'.xpri) # 0

sec(exprl) cos(expr,) # 0
csc(ezpr,) sin(expr,) # 0

Table 1: Restrictions generated for operations that appear in expressions.

steps from which step n was inferred. In the lll"QI) system discussed here, and in the
full system being built for calculus instruction, the restrictions constrain steps to the
real numbers in the usual ways. Dooley [3] discusses the motivation for these constraints
and surveys alternatives to the constraints presenled here.

R,, expresses the domain of the nth step in the sense that it specifies a subset D, =
{x IVi r(x)} of R. Logically, R, acts as an antecedent or presupposition of the tie truth
of the equation, viz., conditions involving the variables and expressions arising in the
derivation that must be true in order for the reasoning so far to be valid.

3 A Simple Categorical REQD System

This particular REQD system, which is intentionall3 left. nameless, allows us to define uni-
variate functions, manipulate them according to univ'ersally true algebraic identities, and take
two-sided and one-sided limits. Its interest lies in (a) the interaction of algebraic manipula-
tions with restrictions, and (b) the essential role restrictions play in checking the correctness
of operations that take limits of univariate functions.

To develop a proof interactively in the REQI) fragment described here, it is necessary first
to define a function. This definition becomes the first step in the proof. Since the intended
interpretation of this REQD system is univariate functions on W, any atomic terms in the
function definition other than the function parameter an(l the independent variable will be
constants. The step created by function definition will also be restricted as determined by
applying the restriction generator to the body of the function definition. Thus the specification
sketch of the only introduction rule in this REQI) syslem is (a) En is a canonical univariate
function definition of the form f(x) = tim(x) (the only free variable in im(x) is x), and (b) R,
is the set of r,(z) produced by using Table I at each level of the expression tree that represents
tin(),'

uin the table, as in 13), the set 0 is the of all rational n||elwrs whose denominator, when reduced to lowest

terms, is an odd integer.

219

Once under way, a proof in the present system may be continued by applying algebraic
identities, replacement or identicals by identicals, defining additional functions, or taking
limits. These particular rules are specified to operate in tie usual ways, so we do not detail
them here. In the full REQD system, many additional o)erations are possible.

In order to prove that REQDs represent valid inferences, we need to show the system
is consistent. In general, a system of inference is consistent if and only ir (a) every basis
step is true under the intended interpretation, and (b) ever. inference step preserves truth
under the intended interpretation. For the present I.IAQ) s. stcm for calculus, the intended
interpretation is onto R. Consistency proofs are nontrivial, and not. the subject of this paper,
but one strategy is to prove isomorphism with a consislent set-heoretic formulation of the
calculus.2 A consequence of consistency is that any inconsistent equation, I = 0 for example,
will have a null domain, as is illustrated by the divide-by-zero examples in this paper.

4 Restriction Management

The restriction manager that has been implemented for R EQ) provides facilities for generating
the restrictions that should apply to a newly introduced function, recording the restrictions
that are added by applying ItEQD rules of inference, and simplifying the restrictions that
apply to a given step. The restrictions are used in certifving or rejectitng a proposed inference
step, as is shown in the following frequently discissed example:

calc> define f(x) = (x**2)**(i / 2)

1/2

i. F(x) (x)
with no restrictions.

calc> I subst[itute] -1; [for] x [then simplify]
2. F(-i) = i

with no restrictions.
calc> I exprod [products of exponents]

(2*1/2)
3. Fx) = x

provided that x >= 0.
calc> 3 [simplify]

4. F(x) = x
provided that x >= 0.

calc> 4 subst[itute] -1; [for] x
-i does not satisfy the restrictions on step 4

calc> i exabs [exponents with absolute value]
(2*1/2)

5. F(x) = Ix I

with no restrictions,
¢a1¢> 5 [simplify]
6. F(x) = IxI

with no restrictions.

talc 6 subst[itute] -1; [for] x [then simplify]

2A nore sustained look at the issue of cohsistency of suc, drivatio, systems has since been done in [1).

220

7. F(-i) - i
with no restrictions.

This example, which involves restrictions on exponentiaLion, illustrates how the laws of cx-
ponents are implemented so that they introduce or check restrictions. We remark that this
approach offers a theoretically complete way for dealing with the subtleties of exponentiation.
Reduce 3.3, for example has a Precise flag which controls this behavior for a few prepro-
grammed cases, but not in general. We believe that. handling subtle restrictions is doomed to
a case-by-case approach unless the unit of representation is tile proof as whole rather than an
individual computation on an isolated term.

4.1 Properties of Restriction Generation

In our Categorical REQD fragment, restrictions arise at. two well-defined points: when func-
tions are defined and when rules of inference are applied. When a function is defined, the
restrictions, which express the domain of the function, can be obtained recursively from the
syntax of the defining expression. The restrictions on a composite expression are always the
restrictions on its subexpressions combined with the restrictions on the composing operation.

The restrictions thus generated describe the largest possible domain for each symbol that
occurs in the expression, taking into account only commitments that are implicit in the ex-
pression itself. For example, when defining f(x) = v\., the largest possible domain for f is the
interval x > 0, since the domain of the square root Function is the set of nonnegative numbers.

At ear' level in an expression tree, at most a constant number of restrictions is needed
to express the domain of the function at that level (cf. Table I). Therefore, the number of
restrictions generated directly from the expression syntax is proportional to the complexity of
the expression. In practice many expressions generate no restrictions, and many others can
be simplified immediately. For example, it is possible to determine that for all X, X1 + 1 > 0,
so no restrictions are needed on log(z 2 + 1).

In an REQD the rules of inference may introduce new restrict ions that express the domain
under which the transformation is valid. For example, it is only correct to change V' to
x under the restriction that x > 0, as in the previous example. So if you want to simplify
the exponent, it will cost you a restriction. A tougher approach would be to say that the
exponent simplification does not apply since its restrictions aren't satisfied. The example
illustrates still a third option: keep the same domain, apply exponent reduction, but pay the
price of an equation acquiring absolute value terms.

Another way rules of inference can generate new restrictions is by introducing new terms.
For example, when multiplying both sides of an equation b' ' the restriction must be added
that z :A 0.

4.2 Strategies for Restriction Simplification

Even though the number of restrictions generated from expressions that appear in an equation
is proportional to the size of the expressions, many trivial and unnecessary restrictions will
be generated. Furthermore, even restrictions that cannot be immediately discharged should
be simplified for the sake of clarity. Consequently, restriction simplification mechanisms are
needed just as normal algebraic simplification is needed for terms in REQD equations.

Also, a proposed inference step may form an inconsistent restriction set. That means the
domain of discourse becomes the null set. Logically, the price of inconsistent restrictions on
a step is vacuity, not invalidity, since anything follows from false premises. Nevertheless, it is

221

especially important in ni instructional setting to dele('t inconsistent restriction sets. There-
fore, the restriction simplifier also has components to alempnt to determine the consistency of
a restriction set. If it determines that the restrict.ions are inconsistent, the system can allow
the student to continue or refuse to accept the operalion for pedagogical reasons.

Three techniques are currently used to simplify restrictions: (I) algebraic simplification
on the terms involved in the restrictions, (2) boolean simplification to combine restrictions
on similar terms, both discussed in detail in [3], and (3) bounds propagation, based on [6],
to determine upper and lower bounds on the expressions involved in the restrictions using
information culled from the other restrictions that. are being simplified. Since many restrictions
are inequalities, any mechanism for simplifying a set of inequalities can also be used to simplify
restrictions. The bounds propagation technique implemented for REQD is relatively efficient
to execute, but gives somewhat loose bounds oi certain expressions because different instances
of the same symbol are analyzed as if they are completely independent.

5 Rules for Limits in REQD

In REQD, limit computations are done using standard limit rules from elementary calculus,
such as the limit of a sum is the sum of the limits. These rules compute a limit by decom-
posing an expression into components for which the limits can be found. However, these rules
presuppose that the expression is defined in a deleted neighborhood about the point at which
the limit is to be taken. If such a neighborhood does not exist, then there is no guarantee
that the limit computed by the rules will be valid. REQI) takes this presupposition into
consideration by attempting to compute a set of restrictions that guarantee the existence of
the deleted neighborhood from the restrictions that guarantee the existence of the expression.
The method that REQD uses to compute these restrictions will be discussed in the following
sections. The goal here is not to prevent the introduction of all limit statements that do not
exist, but to make sure that the deleted neighborhood assumption is satisfied, so that the
successful computation of the-limit constitutes an existence proof.

5.1 Two-sided Limits

Suppose that in REQD we want to introduce lim.. f(x), wlZ'ere f(x) is defined at step S,.
Then f(x) will have associated with it a set of restrictions R. = {r1 (x),..., r,(z)} and each
of these restrictions will have a corresponding domnain set di = {I ri(x)}. For the limit
expression to be valid, we will need to show that f(.r) is defined in a deleted neighborhood of
a. That is to say we need to show that for some c and d with c < a < d, (c, a)U(a, d) gn fl= 1 di.
Testing for this explicitly is difficult. It suffices, however, if we test that none of the restrictions
exclude such a neighborhood. The method that 1IEQD uses for this test. involves the following
steps:

1. Discard any restriction of the form i(x) 0 0. The existence of a deleted neighborhood
will not be affected by the inclusion or exclusion of a finite number of points. How-
ever, some of these restrictions may delete more than a finite number of points; these
restrictions will be characterized below.

2. Make all inequalities strict. Using the same motivation as in .he first step, a restriction
of the form 14(x) > 0 can be replaced with II(T) > 0 without. affecting the existence of
a deleted neighborhood when only a finite number of points are specified by the equation
1t(x) = 0. Other inequalities are handled in a similar way.

222

3. Evaluate f he restrictions at a. After substituting a for m in the modified set of restrictions
and simplifying, if the restrictions are all satisfied then the deleted neighborhood exists,
subject to the caveat mentioned above. If they are inconsistent,, then no such deleted
neighborhood exists. If some restrictions cannot be completely simplified then these
restrictions form the restrictions on a thai. guarantee that a deleted neighborhood can
be found. These restrictions are added to the new step.

5.1.1 An Example of the Rule

The following is an example of a two-sided limit, computation in R H'QI). here REQD rejects
the first limit since the function is not defined on open intervals on both sides of 3. In the
second case, REQD forms the limit but adds the restriction that a > 3, guaranteeing that the
deleted neighborhood exists.

calc> define f(x) = sqrt(x - 3)
1. F(x) = SQRT(x - 3)

provided that x - 3 >= 0.
calc> 1 limit [As) x (Approaches) 3
There are not open intervals of X on both sides of
calc> I limit [As] x [Approaches] a
2. lim F(x) lim sqrt(x - 3)

x->a x->a
provided that a - 3 > 0.

5.1.2 Discussion of the Rule

Three problems arise from ubing the procedure outlined above:

1. A deleted neighborhood may exist outside the domain of the modified restrictions. This
situation can occur when a restriction that only excludes a countable number of points is
disguised as a restriction that seems to delete an entire interval, and so is not discarded
by step 1. Examples are a2 > 0 and cos(x) + I > 0. When this type of restriction arises,
sonic limit computations may not be allowed (on the basis of not being able to find a
deleted neighborhood) when a deleted neighborhood actually exists, but no extra limit
introductions will be allowed.

2. The converse of the first problem also arises. In steps I and 2, restrictions are modified
under the assumption that only a finite number of points are affected. However, if
g(x) = k on some interval, say [a, b], then a restriction of the form g(x) 0 k excludes
more than a finite number of points. If such a restriction is mistakenly discarded, a
limit could be allowed at a point in (a, b) that. would not otherwise be acceptable. An
example of this type of restriction is given by [x'] - 0, which deletes the interval (-1, 0].
Similarly, when a restriction of the form .q(r) > k is modified, the entire interval (a, b)
will be removed from the available points where the limit could be taken, which may
cause the limit mechanism to fail to recognize an existing deleted neighborhood on that
interval.

3. A restriction may delete a tountably infinite number of points. If a restriction takes
the form g(x) : 0, where the solution set of .q(x) = 0 is an entire sequence of points
(as for the function sin), then discarding the restriction may allow a limit to be taken

223

at any of the accumulation points of the set g(.T) = 0, where no deleted neighborhood
exists. For g(x) = sin 1, this problem allows the int.roduction of lim. 0) even though
there is no deleted neighborhood around 0 contained in the domain set specified by the
restriction g(x) #h 0.

Note that almost all of the limit exercises that arise in elementary calculus do not exhibit
these problems. When one of these problems causes REQI) to fail to allow a valid limit
introduction, REQD still maintains a consistent proof. Further work is being done on ways to
prevent REQD from allowing limit introductions %% here a corresponding deleted neighborhood
fails to exist.

5.2 One-sided Limits

One-sided limits require not that the function in question is defined on a deleted neighborhood
about some point but that it is defined only on Ihe appropriate half of the deleted neighbor-
hood. This loss of symmetry creates problems for the lest. used in the two-sided case. We
cannot in general determine by evaluating an inequality r,(x) at the point a whether it is de-
fined on intervals (b, a) or (a, c), when it is not defined on both. As such, a different approach
is needed. We will discuss the problem of one-sided limits only for limits from the right. The
case of limits from the left is similar.

Suppose that an expression f(x) has restrictions r, (x),..., r,(x). Then f(x) will have a
semi-deleted neighborhood on the right of a if and only if 3o s.l. f(x) is defined on (a, a + co).
The existential quantifier makes this formulation dilficull to use, as it, does for two-sided limits.
One way to get around the existential statement is to introduce a positive constant c which
can take on any value in (0, co), and where co is taken to be arbitrarily small. The semi-deleted
neighborhood will exist if and only if

a+cE ndi 4= a+CEdiVi 4 Ari(a+-) is not false.
i=l i=I

The object is then to simplify each ri(a + c) to a form that. does not depend on C, but that
expresses the restrictions that ri(x) places on where a one-sided open interval may be found.
By examining the argument of each restriction and using the properties of c, this goal can be
accomplished for at least two special cases:

1. The argument of the restriction is a polynomial. Assume that ri(x) is of the form
P(x) > 0 (cases for other types of inequalities are similar). Then ri(a + c) can be put
into the form f + P'(c) * c > 0 where f is some expression not containing c and P'(C) is
a polynomial in c. These inequalities are resolved in the following way:

f+ P'()*r>0 (f>0)V(f=0AP(C) >0)

Since P'(E) has degree one less than P(x), repeated application of this reduction will
give us a set of restrictions not containing .

2. The argument of tihe restriction is a rational function. In the case of restrictions which
involve rational functions we can use the following procedure to resolve a particular
restriction r;(a+c): assume that ri(x) is of the form 11(.T) > 0, where 11(X) = R(x)/Q(x),
and R(z) and Q(x) are polynomials. (Again, other inequalities are similar.) Now since

J(a + c) > 0 4=:, R(a + c) Q(a +) > 0

224

and P(a + E) = 1?(a + c) * Q(a + c) is a polynomial, the technique used for restrictions
involving polynomials will complete the process of simplifying ri(a + ().

These cases allow a complete justification for almost all of the exercises required of first-year
calculus students. If each of the restrictions falls in one of these categories, we can compute
restrictions which describe exactly where a semi-deleted neighborhood can be found, just as
the evaluation of the restrictions in the two-sided case told us when the deleted neighborhood
existed. Otherwise, we do not allow the introduction of the limit expression.

5.2.1 An Example

Example of limtn.,,+ v/x -a The following represents the internal reasoning that the limit
machinery makes when it is given a restriction set.

calc> limit [as] x [approaches] a [of) sqrt(x**2 - a**2) [from] +

Reasoning internally...

r() : X2
- a 2 > 0

r(a + c) : (a + C)2 - a 2 > 0 4* 2a(+ (I > 0
<= 2a+r>0

a 2a>OV(2a=OAI>0)
442o>0

4o>0

... and so REQD will respond:

1. lim sqrt(x**2 - a**2), provided that a >= 0.
x->a+

5.2.2 Discussion of this Approach

These restrictions become increasingly more difficul. to simplify when they are other than
polynomial in character. In such cases we must look for adequ- nations. For dif-
ferentiable restrictions it may be possible to use some metho nation, e.g. Taylor
series. In cases in which we cannot simplify the restrictions, if t. ..ants to proceed any-
way, REQD will add the audit assumption that the deleted neighborhood exists. These audits
can also be simplified, since a later restriction of the form x, < 0 will rule out the existence of
a deleted neighborhood of ;3, for example. We prefer to avoid these audit conditions given the
difficulty of doing anything useful with them.

5.2.3 An Example involving an Approximation

Example of lim._,,+ Vcos(z) - cos(a). The following represents the internal reasoning that
the limit machinery could make given a restriction set, that involves non-rational functions.

225

calc> limit [as] x [approaches] a [oil sqrt(cos(x) - cos(a)) [from] +

Reasoning internally
Restrictions: cos(z) - cos(a) > 0.
Evaluating the restriction at x = at- E and using the lirsl. 3 terms of the lylor Expansion

to make the simplifications cos(c) = 1 - 2 and sin(c) = (gives:

cos(a + c) - cos(a) > 0 cos(a)cos(c) - sin(a)sin(c) - cos(a) >_ 0
* cos(a)(I - (2) - si,(a), - cos(a) _ 0
* -sin(a) + r(-Cos(o)) > 0

sin(a) < 0 V (s in (a) = 0 A cos(a) 0)

which is not further reducible given what we currently know.
... and so REQD will respond:

i. lim sqrt(cos(x) - cos(a))
X->a+

provided that sin(a) < 0 or (sin(a) = 0 cos(a) <= 0).

This inequality holds just for a E [-ir ± 2k,r, 0 41 2kwr), for integral k, which is the correct
restriction for the existence of the semi-deleted neighborhood

6 Conclusion

We conclude with several comments about the relevance of {EQI) systems to instruction-the
larger purpose this work on REQDs serves.

1. REQD systems provide a coherent, always consistent, and mathematically natural en-
vironment in which to construct derivations interactively. R d does not prevent a
student from trying erroneous inferences, bnt. its design requirement for consistency
implies it will detect errors, as the examples herein have shown.

2. Because of restriction management, REQI) can detect mathematically subtle errors,
while virtually eliminating errors of a stenographic nalure.

3. Although the management of restrictions is, in principle, no less complicated than com-
puter algebra itself, restriction management is a distinctly background activity in REQD
derivations. Since restriction management can he separated into generation and simpli-
fication components, constraints on the degree of simplification can be imposed without
affecting validity of the represented inference. Consequently REQI) systems can be
tuned for computational economy.

4. There is much debate now about the nature of the calculus curriculum [7]. REQD
systems with powerful inference rules are consistent with shifting the emphasis of calculus
courses more toward analytical rather than computational skills. RQD systems, with
a more finely distinguished set of rules are consistent, with the traditional emphasis
on methods of computation in calculus. But whatever the instructional emphasis, we
believe REQD systems bring proof-the essence of mathematics back into the foreground
of calculus instruction.

226

References

[1) R. Chuaqui, and P. Suppes. An Equational Dedurtive System for the Differential and Inte-
gral Calculus. To appear in the Proceedings of Colog 88, Journal of Symbolic Computation,
1989.

121 J. 1I. Davenport, Y. Siret, and B. Tournier. Computer Al.gebra: Systems and Algorithms
for Algebraic Computation. Academic Press, London, 1988.

[3] S. Dooley. The Use of Domain Restrictions iv Compuler Algebra Systems. Master's thesis,
University of California, Berkeley, California, Ht December 1988.

[4] R. J. Fateman. On the systematic construction of algebraic manipulation systems. Draft
of 24 September 1987. Submitted to the .lournal for Symbolic Computation.

151 D. Richardson. Some unsolvable problems involving elementary functions ofa real variable.
Journal of Symbolic Logic, 33:511-520, 1968.

[6] B. P. Sacks. Automatic Qualitative Analysis of Ordinary Differential Equations Using
Piecewise Linear Approximations. PhD thesis, Massachusetts Institute of Technology,
Cambridge, Massadmusetts, February 1988.

[7] L. A. Steen (Bd.). Calculus for a new century: a pump, not. a filter. Notes of the Mathe-
matical Association of America, 8, 1988.

[8] P. Suppes, T. A. Ager, P. Berg, R. Chuaqui, W. Graham, R. E. Maas, and S. Taka-
hashi. Applications of Computer Technology to ('re-College Calculus: First Annual Report.
Technical Report 310, Institute for Mathematical Studies in the Social Sciences, Stanford
University, April 1987.

227

Bunny Numerics
A Number Theory Microworld

Craig Graci
Jack Narayan

Randy Odendahl

State University of New York, College at Oswego

Abstract. A microworld designed for use in number theoretic investigations
is described. This microworld, bunny numerics, is being used to complement
the workhorse turtle geometry microworld in a Logo based problem solving
course that we have recently initiated at SUNY Oswego. The microworld is
defined, examples of its use are provided, suggestions for its use are offered,
and a few notes on its implementation are made.

Contents

1. Introduction
2. The Bunny World

3. Basic Bunny Talk
4. Standard Bunnies, Breeds, and Birthing Operators
5. Selected Examples of Programming with Bunnies
6. Bunny Sets and Number Set Operators
7. Nonstandard Bunnies
8. Uses of Bunny Numerics
9. Some Implementation Notes

10. Concluding Remarks

1. Introduction

The bunny numerics micorworld was inspired largely by Seymour Papert's
conception of how to create a curriculum, which is "to create a network
of microworlds, each one focussing on different areas of knowledge."1

At SUNY Oswego we have recently introduced a two course sequence
designed to satisfy a general education requirement in the area of
mathematics and computation. The two cQurses, Elements of Problem
Solving, Mathematics, and Computation, I and II, are grounded in Logo.
They are intended to address mathematics in the broadest sense. That is,
they aim to provide students with an understanding of the sorts of thought
processes employed by mathematicians and computer scientists in their
problem solving endeavors. In support of this course we have crafted a
small number of microworlds which serve to complement the workhorse
turtle geometry microworld.

This paper describes one of these microworlds, bunny numerics, which was
designed for use in number theoretic investigations. Like the turtle
geometry microworld, the bunny numerics microworld is embedded in Logo.
However, since bunny numerics is an "add on," by contrast with turtle
graphics which is inherent in Logo, the bunny numerics code must be
explicitly loaded into the Logo system before it may be used.

Specifically, Sections 2, 3, 4, and 7 present the essential features of the
bunny numerics microworld. Sections 5, 6, and 8 are intended to provide
perspective. Section 9 contains brief remarks on the conceptual model
underlying the bunny numerics microworld, and also on the use of Coral
Software's ObjectLogo as the implementation language.

2. The Bunny World

The world of the bunnies may be thought of as an ocean dotted with a never
ending "line" of islands. The islands are called home, 1, 2, 3, and so on.

A BUNNY'S WORLD

229

There are various breeds of bunnies, corresponding, in the main, to kinds
of numbers. For example, there are odd bunnies, even bunnies, Fibonacci
bunnies, and prime bunnies. A given breed of bunny is generally limited
in terms of the islands that it can visit. A prime bunny, for example,
can land only on the prime islands, the islands numbered 2, 3, 5, 7, 11, etc.,
and also on the Home island. A bunny knows never to set foot on an island
which is not suited to its kind. All bunnies are comfortable at Home, which
is also the birth place of all bunnies.

ODD, eONNIES I'Now -rAF-jy'

N#rASvpTEP otq C-vrN IS'ANp'S)

2

3. Basic Bunny Talk

Bunny talk is the set of Logo procedures one uses to communicate with
bunnies. The most fundamental bunny talk procedures are: Hop, Location,
Distance, HopAge, and HopHome. A brief description of each follows.

Hop bunny (command)

The specified bunny
moves to the next
highest numbered
island to which
its kind is suited.

a Location bunny (operator)
Loc bunny A MIME 8L OS A4 .oj

The "name" of the island on which the specified bunny is presently resting
is returned.

4 Distance bunny (operator) 'Y)
Dis bunny Ir
The number of hops
that the specified
bunny is from Home
is returned.

A 3 0 0 OvOWY rl-W 105 PIMUCS NWK HOME,

230

HopHome bunny (command) • HopAge bunny (operator)
Age bunny

The specified bunny
hops Home. The number of hops that the

specified bunny has taken
since its birth is returned.

4. Standard Bunnies, Breeds, and Birthing Operators

Standard bunnies are bunnies who are born when bunny numerics is
loaded. Initially, they are found lounging at home. Standard bunnies
were included with young children in mind, and will generally be
ignored by "grown ups." A good way to begin thinking about number theory
is to simply generate some sequences of numbers, and look for patterns.
The reader may wish to refer to Table 1 when reading the following
examples. Note, particularly, the variables that are used to denote standard
bunnies.

? ;;view some squares, assuming Sammy is at home
? REPEAT 10 [Hop :Sammy Type (Loc :Sammy) Type "I I
1 4 9 16 25 36 49 64 81 100

? ; ;view some multiples of 4, assuming Mark4 is at home
? REPEAT 10 [Hop :Mark4 Type (Loc :Mark4) Type "I I]
4 8 12 16 20 24 28 32 36 40

A generalization of this idea is in order. The following procedure takes a
bunny as input and displays the "names" of the first few islands on which
it comes to rest.

TO Sequence :b :n
HopHome ;note that this is not a "bunny invariant" procedure
REPEAT :n [Hop :b Type (Loc :b) Type "I I

END

? ;;display the first 10 Fibonacci numbers
? Sequence :Flo 10
1 1 2 3 5 8 13 21 34 55

? ;;display the first 10 prime numbers
? Sequence :Pierre 10
2 3 57111317 1921 23

Standard breeds are breeds of bunnies that exists when the bunny numerics
system is loaded. One can create virtually any number of bunnies of a
particular bunny breed through application of appropriate birthing operators.
A simple illustration employing two bunnies of like breed in a harmonious
way is given by the following procedure for displaying pairs of twin primes,

231

i.e., prime numbers which differ from one another by two. This procedure
also typifies the representational independence characteristic of many
solutions to number theory problems expressed in bunny talk.

TO DisplayTwinPrimes
Make "bI PrimeBunny
Make "b2 PrimeBunny
Hop :b2
FOREVER

_ [Hop :bl Hop :b2
IF (((Loc :b2) - (Loc :bl)) = 2) [Pr List (Loc :bl) (Loc :b2

END

? DisplayTwinPrimes
3 5
5 7
11 13
17 19
29 31

The table below identifies a sampling of the standard bunnies, breeds, and

birthing operators.

Standard Breeds Birthing Operators Standard Bunnies

Even Bunny EvenBunny Ed
Square Bunny SquareBunny Sammy
Factorial Bunny FactorialBunny Fred
Fibonacci Bunny FibonacciBunny Flo
Multiple of i Bunny MultipleBunny < i > Mark1, Mark2, .. , Mark12
Divisors of n Bunny DivisorBunny < n > Dil, Di2, .., Di20
Prime Bunny PrimeBunny Pierre
Perfect Bunny PerfectBunny Pearl

Table 1: Some Standard Bunnies, Breeds, and Birthing Operators

The standard breeds were rather arbitrarily chosen, and are merely a small
fraction of the interesting bunny breeds. For a complete listing of the
standard bunny numerics entities see the Bunny Numerics Report [2]. The
definition of nonstandard breeds is discussed in Section 7.

5. Selected Examples of Programming with Bunnies

5.1 Generating Simple Lists of Numbers

The following procedure simply displays a specified number of factorials.

TO DisplayFactorials :n
Make "FB FactorialBunny
REPEAT :n [Hop :FB Print Location ;FB]

END

232

? DisplayFactorials 71
2
6
24
120
720
5040

Similarly, one could write a procedure to print out the first n primes, cubes,
etc. Of course we could have called upon Sequence to list the Factorials, but
as they quickly become very large, the placement of each on a separate line
seemed appropriate. Several students, upon seeing the bunnies in action,
have asked about how various sequences of numbers are generated. This is
the sort of interest that we had hoped bunny numerics would generate! We
earnestly encourage interested students to investigate the generation of
various number sequences in terms of the more primative Logo procedures.

Displaying the multiples of a given number may be accomplished with the
following procedure:

TO DisplayMultiples :m
Make "B MultipleBunny :m
FOREVER [Hop :MB Print (Loc :MB)

END

The multiple bunny breed is partitioned into subbreeds. The parameter
provided to the birthing operator is used to select the particular subbreed
from which the bunny is born.

5.2 Searching for Numbers with More than One Property

The example below presents a very primative solution to computing the
least common multiple of two integers. Such illustrations can help to
make notions meaningful to beginners. The "leapfrogging" technique
employed by the bunnies is a common idiom used in bunny talk programming.

TO LeastCommonMultiple :nl :n2
LocalMake "Jack (MultipleBunny :nl "Jack
LocalMake "Jill (MultipleBunny :n2 "Jill
Hop :Jack PrintLoc :Jack
Hop :Jill PrintLoc :Jill
WHILE (NOT((Loc :Jack)=(Loc:Jill)) 1

IFELSE ((Loc :Jack) < (Loc :Jill
C [Hop :Jack PrintLoc :Jack I
(Hop :Jill PrintLoc :Jill]

PrintLines 2
(Display "The LCM of " :nl "{ and { :n2 "I is: { (Loc :Jack

END

233

? LeastCommonMultiple 4 7
location of Jack: 4
location of Jill: 7
location of Jack: 8
location of Jill: 14
location of Jack: 12
location of Jack: 16
location of Jill: 21
location of Jack: 20
location of Jack: 24
location of Jill: 28
location of Jack: 28

The LCM of 4 and 7 is: 28

As may be surmised from this example, several 10 utilities are included
with the bunny numerics microworld, e.g., PrintLoc, Display, PrintLines,. and
TypeSpaces. Moreover, the use of an optional name parameter, which may
be supplied to any birthing operator, is employed in the calls to the
MultipleBunny birthing operator. This name is used by the PrintLoc
command. (In ObjectLogo, the applicationof a procedure with some number
of inputs other than the standard requires a LISP-like use of parentheses).

The following less prolix example uses the same leapfrogging technique
to compute and display prime Fibonacci numbers.

TO DisplayFiboPrimes
LocalMake "FB FibonacciBunny
LocalMake "PB PrimeBunny
Hop :FB Hop :PB
FOREVER
[IFELSE ((Loc :FB) = (Loc :PB

[Print (Loc :FB) hop :Fb hop :PB
[IFELSE((Loc :FB) < (Loc :PB)) [Hop :FB] [Hop :PBJ]

END

? DisplayFiboPrimes
2
35
13
89
233
1597

5.3 Divisors

The number sequences focussed on thus far have all been infinite. In
contrast, the sequences of numbers corresponding to the subbreeds of
divisor bunnies are among those which are, in a sense, finite. These
"sequences" are somewhat artificial, but nontheless turn out to be very
useful. A "divisor 10" bunny, for example, can land on the islands 1, 2, 5,
and 10, in addition to Home. Recall the procedure Sequence:

234

__________ _____________

? Sequence (DivisorBunny 10) 8

1 2 5 10 home 1 2 5

The following procedure will neatly display the divisors of a given number.

TO DisplayDivisors :n
LocalMake "Diva DivisorBunny :n
REPEAT (LongestTrip :Diva) (Hop :Diva Type Location :Diva TypeSpace
PrintLine

END

? DisplayDivisors 23
1 23
? DisplayDivisors 24
1 2 3 4 6 8 12 24

The LongestTrip operator is a part of bunny numerics. It computes the
maximum distance from home that a bunny may find itself, and it may be
applied to any bunny. The computation will terminate, however, only if
the longest trip is finite.

The procedure below displays a table of divisors for the first n natural
numbers.

TO DisplayTableOfDivisors :n
FOR (i 1 :n)
Type :i TypeSpaces (6 - (Count :i)) DisplayDivisors :i]

END

? DisplayTableOfDivisors 6
1 1
2 12
3 13
4 124
5 15
6 1236

Generating sequences of numbers and various tables for analysis is
essential to finding patterns and making conjectures in the elementary
theory of numbers. The bunnies can be extremely helpful in this regard.

6. Bunny Sets and Number Set Operators

There is provision in bunny numerics to create sets of numbers derived from
number sequences. The principle bunny set constructor is BunnySet, which
takes two inputs, a bunny, say b, and an integer, call it n. This operator
returns a set corresponding to the first n elements of the sequence
generated by b. There are also a variety of number set procedures included
with the bunny numerics system for use with bunny sets. To illustrate:

? PrintSet BunnySet OddBunny 15
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

235

? PrintSet BunnySet FibonacciBunny 7
1 2 3 5 8 13}

Notice the absence of two occurrences of "1" in the Fibonacci set. Note also
that order is not significant within the braces.

This feature of bunny numerics can be used to describe many ideas cleanly.
The procedure below, for example, generates primes using Eratosthenes'
sieve method.

TO Sieve :n
LocalMake "Numbers Diff (BunnySet NaturalBunny :n) (Set 1
LocalMake "Limit (Sqrt :n
FOR 1 2 :Limit]

IF (ElementOf :i :Numbers

LocalMake
-- "SpecialSet Diff (BunnySet (MultipleBunny :i) :n) (Set :i

Make
"Numbers (Diff :Numbers :Specialset

OUTPUT (:Numbers
'END

? PrintSet Sieve 50
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

The operators Set, Diff, ElementOf, and the command PrintSet are all part of
the aforementioned number set procedures included with bunny numerics.

7. Nonstandard Bunnies

The procedure NewBunnyBreed is used to create a new breed of bunnies. For
the general form of this operator, and details of its use, the Bunny Numerics
Report [2] may be consulted. Below are two examples of the use of the
NewBunnyBreed operator in defining new bunny breeds.

A breed of geometric progression bunnies could be defined as follows:

NewBunnyBreed "GeoBunny I Base Mult
[Make "CI :Base I
[Make "CI (:CI * :Mult)

Cl stands for "Current Island." Recalling, again, Sequence from Section 4:

? Sequence (GeoBunny 2 3) 5
2 6 18 54 162
? Sequence (GeoBunny 5 9) 3
5 45 405

236

As a second example, a breed of wonder bunnies may be defined in order to
investigate the "wondrousness" number property discussed by Achilles End
the Tortoise in Douglas Hofstadter's Aria with Diverse Variations.2

NewBunnyBreed "WonderBunny [i 3
[Make "CI :i
[IFELSE (Odd :i) [Make "CI (:CI * 3) + 1 (make "C! (:CI / 2)] 3

The following procedure might then be used to verify that a given number
is, indeed, wondrous.

TO IsWondrous :1i
Make "WB WonderBunny :3i
FOREVER [Hop :WB IF ((Loc :WB) = I) [OP "True

END

8. Uses of Bunny Numerics

One can use bunny numerics in the ways alluded to thus far: to generate
number sequences; to find numbers with particular properties; to test
conjectures. The student should typically, perhaps with some direction
from the teacher, read some of the history and lore of number theory,
identify interesting questions, and explore these questions with the aid of
the bunny numerics microworld.

Beyond this, one might exploit the bunny numerics microworld in a number
of ways. For example, a tried and true induction game based on guessing the
next number in a sequence can be nicely automated in the context of bunny
numerics. We have written a version called INDUCE which takes a bunny as
input, generally a nonstandard bunny of our own design, and then interacts
with the player offering the opportunity to guess the underlying rule. We
employ a very simple accoptance procedure. If the player can correctly
identify the next three numbers in the sequence, we credit the player with
knowing the rule. Each time the person fails to guess the rule, the next
number in the sequence is divulged. The distance from Home of the bunny at
the time the rule is finally guessed is displayed at the end o a game.
INDUCE is quite like WHEEL OF FORTUNE, only a bit more interesting irom the
perspective of a mathematician -with one notable exception, perhaps.

The generation and solution of cross number puzzles are activities enhanced
by the bunny numerics microworld. An interesting Artificial Intelligence
project within the context of Logo, employing both the turtle graphics and
the bunny numerics capabilities, would be to completely automate the
generation of cross number puzzles. Good puzzles mu, '. have a certain
"degree of interest" which is sufficiently difficult to describe as to, indeed,
render their automatic generation a project within the domain of Artificial
Intelligence. Regardless of how they are created, cross number puzzles

237

present very nice opportunities to apply strategies of constrained search, an

important aspect of problem solving.

9. Some Implementation Notes

Our implementation of the bunny numerics microworld took very little time,
largely because of the nature of the language that we used, namely Coral
Software's ObjectLogo.

We exploited the object oriented features of ObjectLogo in modelling the
bunnies. All bunnies have certain commonalities, e.g., they can all hop,
determine their location, determine their distance from home, determine
their "hopage," and find their way home. Thus a generic Bunny class was
established as a direct subclass of the Logo class. Due to the fact that
different bunny breeds hop in dramatically different ways, each breed
requires its own refinement of the Hop procedure. Also, each bunny requires
its own set of state variables, and thus its own birthing operator. The
natural thing to do was to make each breed a subclass of the generic bunny
class. This was all a straightforward exercise in object oriented
programming. What was less straightforward was establishing nonstandard
breeds as subclasses of the generic bunny class, "under the table" so to
speak.

We exploited ObjectLogo's very direct kinship with LISP in order to achieve
the undertaking just mentioned. Basically, the NewBunnyBreed procedure
programmably generates ObjectLogo programs required to establish the new
bunny breed classes as subclasses of the generic bunny class.

We also exploited ObjectLogo's inherent ability to operate on large integers.
Multiline (hundreds of digit) factorials and perfect numbers, for example,
are readily computed through bunny numerics, in a manner consistent with
the computation of small factorials and perfect numbers.

10. Concluding Remarks

We are only now using the bunny numerics microworld in the first of our two
new course offerings at SUNY Oswego. We hope soon to report on its
successes and failures.

238

Citations

1. Papert, S. "MICROWORLDS: Transforming Education," in Artificial
Intelligence and Education, Volume One, edited by R. Lawler and
M. Yazdani, Ablex Publishing Co., 1987, page 60.

2. Hofstadter, D. Godel, Escher, Bach, Vintage Books, 1980, pp. 400 and 401.

References

[1] Coral Software: ObjectLogo Reference Manual. Coral Software Corp.,
19'86.

[2] C. Graci: Bunny Numerics Report. SUNY Oswego Department of Computer
Science, 1989.

[3] D. Hofstadter: Godel, Escher, Bach. Vintage Books, 1980.

[4] R. Lawler and M. Yazdani (ed): Artificial Intelligence and Education,
Volume One. Ablex Publishing Co, 1987.

[5] S. Papert: Mindstorms: Children, Computers and Powerful Ideas.
Basic Books, 1980.

239

Advanced Mathematics from an Elementary Viewpoint:
Chaos, Fractal Geometry, and Nonlinear Systems

Wallace Feurzelg
Paul Horwitz

Albert Boulanger
BBN Laboratories, Cambridge, MA

Abstract. We are conducting exploratory research to investigate the instructional issues and
educational benefits from introducing both a new paradigm and a new area of applied mathematics into the
high school curriculum. The new paradigm is experimental mathematics and the new area is mathematical
chaos. By experimental mathematics we mean computer modeling of mathematical processes to gain insight
into their structure and behavior so as to inform and guide mathematical inquiry. Mathematical chaos is the
study of orderly and chaotic behavior in nonlinear processes and in the real world systems modelled by them.
Both depend fundamentally on the use of computers and interactive graphics technology.

School curricula often present the standard subjects in an intellectually impoverished and uncompelling
way, teaching modes of thinking and doing that are distinctly different from those used by practitioners.
School math is not a model of real mathematics and school science is not genuine science. Education
should be directed to grounding knowledge in experience and in contexts of use. Our thesis is that the
introduction of experimental mathematics and mathematical chaos will help accomplish this by creating highly
motivating computational environments that foster exploration and discovery and bridge the gulf between
schoolwork and real mathematics and science.

1. Mathematical Chaos

Natural processes are inherently nonlinear. Nonlinear systems can give rise to very
complex behaviors. Regular, stable, and predictable behavior can suddenly become
highly irregular and unpredictable (a familiar example is turbulent flow). Until very
recently we had no effective methods for analyzing, or even for observing and studying,
the deep structure underlying these complex behaviors. This situation has changed
dramatically with the emergence of a new area of applied mathematics called
mathematical chaos, developed to study the nature of orderly and chaotic behavior in
mathematical processes and in the real world systems modelled by them.

Mathematical chaos is founded on a set of remarkable discoveries: 1) that nonlinear
processes can give rise to very complex unpredictable behaviors in a rich variety of
systems - physical, chemical, and biological, 2) that these chaotic behaviors are

nevertheless deterministic and can be modeled by simple mathematical equations (those
with few variables or with a small number of degrees of freedom), 3) that the processes by
which systems approach chaos are themselves orderly, and 4) that the underlying deep
structure of chaotic behavior is very similar across diverse.domains and systems, perhaps
even universal.

The study of this new mathematics depends heavily upon computationally intensive
graphic methods. Its key findings, despite their dramatic and universal features, were all
but impossible to discover without computers. The science of chaos is a child of the 20th
century and could only have emerged as a subject for investigation and study in the
computer era. Work on chaos is contributing to a deeper understanding of fundamental
issues in mathematics such as the nature of algorithmic complexity, the difference
between nondeterminism and randomness, and the deep structure of self-similar
processes. During the past fifteen years chaos has had diverse and extensive
applications throughout the sciences. This work is producing breakthroughs in our
understanding of complex nonlinear systems of so profound a character as to constitute
an intellectual revolution, a genuine paradigm shift in scientific thinking.

A major theme running through the history of 20th Century thought has been the
gradual but steady erosion of certainty. This has taken place, by and large, along two
separate, but parallel dimensions: the mathematical and the physical. In mathematics this
century has seen the discovery that axiomatic set theory is inherently inconsistent,
followed shortly by the proof that any such system must contain undecidable propositions,
and eventually by the identification of particular examples. Through physics we have
learned that the world is in principle unmeasurable and unpredictable beyond certain
limits.

But these discoveries, fundamental and surprising though they were, had little
practical meaning for most people. They applied only under rather esoteric conditions
and their relevance for the everyday world was minor. However, for the past fifteen years
or so - largely due to the advent of the computer, and building on pioneering work from
the first decade of the century - we have begun to realize that even the "simple"
mathematics and physics that we thought we understood has surprises in store for us.
Simple, rational functions, when iterated many times, turn out to have unexpected
properties; similarly, simple physical systems, in certain regimes, display wild and erratic
behavior that may cause arbitrarily similar initial states to diverge exponentially, making it
effectively impossible to predict the future behavior of the system. Thus the discovery of
mathematical chaos lies at the confluence of the two great strands of uncertainty,
mathematical and physical, and its consequences, though dimly perceived at present, are
certain to -e profound.

2. Experimental Mathematics

Computers have yet to make their most important intellectual contributions to the
disciplines. Their enormous potential for supporting the creative and productive aspects
of scientific, artistic, and scholarly thought and work is only beginning to be apparent.

241

Computers are already transforming the way science is done. Computer modeling is
becoming a standard tool for experiment and theory. It is being used to study extremely
complex processes, ranging in scale from the inner structure of the proton to star cluster
formation and decay. It can be an illuminating source of creative insights about the
structure and behavior of complex phenomena that were previously inaccessible, and it
has made possible the solution of problems previously considered unsolvable. The use
of computer-based models can be expected to provide dramatic breakthroughs in
mathematics, physics, chemistry, genetics, economics, meteorology, pharmacology,
demography, and other fields.

Computers will become increasingly important to mathematicians as basic research
tools. This is already beginning to happen in the seminal area of mathematical chaos and
nonlinear dynamics. Some of this work has great theoretical importance as well as rich
applications. Chaos, far from being an isolated phenomenon, appears to be ubiquitous
both in mathematics and nature. For example, iterated sequences of the basic
elementary functions - sine, cosine, exponential, quadratic - exhibit chaotic behavior in
the complex plane. This is a fairly recent and surprising revelation whose implications
have yet to be fully investigated and understood.

Progress in this burgeoning research area would not have been possible without the
use of powerful computational and graphic display facilities as essential investigative
tools. Yet, the computational methods required to explore mathematical chaos and
nonlinear systems are now accessible to high school students.

3. Implications for the High School Curriculum

Imagine U.S. history ending with the McKinley Administration, an English curriculum
that makes no mention of Joyce or Faulkner, a course in physics that knows nothing of
atoms and nuclei. The mathematics curriculum is unique among major secondary school
subjects in that it contains absolutely no content that was developed or discovered in the
twentieth century. Indeed, most of what is included in the conventional mathematics
curriculum might well have been taught to George Washington.

There are reasons for this, of course. Most of the mathematics developed since the
Renaissance has little relevance to the computational tasks that confront us all in
everyday life. Moreover, much of it is deemed too abstract and tco difficult for all but the
ablest students. Yet it is evident that many very deep mathematical ideas - the concept
of infinity, for instance - ho!d real interest, particularly for younger students. It is also
undeniable that this interest is dissipated and lost, for the vast majority of students,
probably as a byproduct of their exposure to the "real" mathematics of long division and
the binomial theorem.

We do not intend, in this paper, to argue for either side of the long-standing, and at
times quite bitter, debates on issues such as whether the availability of computers and
calculators has made such topics as long division "obsolete". Rather, we wish to describe
the remarkable symbiosis that we perceive between the direction of certain contemporary
mathematical research and the needs of mathematics education, and to point out ways in
which the computer can help to fill the gap between the two. Specifically, we believe that

242

recent research on chaos offers an unprecedented opportunity for students not only to
learn some extremely important mathematics of very recent vintage, but in the process to
experience the excitement and pleasure of mathematical inquiry and discovery.

The purpose of our project is to explore the introduction of the frontier research area of
chaos into the high school curriculum. On the face of it, this may seem unrealistic.
Advanced research typically implies sophisticated concepts and technically difficult
methods well above the level of school mathematics. In the case of chaos, however,
despite its modernity and its applicability to real-world situations, an introductory
presentation requires little mathematics beyond high school algebra. Moreover, the
visual displays that are the standard mode of representation of chaotic processes greatly
facilitate understanding. There is a deep connection between chaos and fractal
geometry. The graphic pictures that are generated as natural outputs of investigations are
often breathtakingly beautiful objects in their own right - the connection between
mathematics and visual art has never been so apparent.

We believe that a nontrivial introduction to the ideas and methods of chaos can be
developed and presented in a way that is both accessible and compelling to a significant
fraction of high school students. This material is ideally suited to give students authentic
experience of what doing mathematics and science is really like in areas that are
meaningful and truly interesting to them. It provides rich opportunities for successful
mathematical exploration, inquiry, and discovery. We plan to generate projects in
relatively uncharted areas where it is possible for students to make new findings. In
introducing students to the concepts and techniques of mathematical chaos we are
placing them in a position to conduct investigations in a manner quite analogous to that
employed by professional mathematicians. And it is almost inevitable that they will, in
fact, discover new things, for the surface has only been scratched in this field, and most of
the territory remains unexplored.

We plan to investigate a rich variety of topics from the mathematics of chaos, fractals,
and nonlinear systems, including applications of many kinds. We seek to develop a
coherent conceptual framework for introducing the key ideas at a level appropriate for
high school presentation. To this end we are creating software tools designed to aid
students in carrying out mathematical experiments and explorations. These tools will
enable students to build and run models of dynamical systems with complex behaviors, to
see their effects unfold, and to manipulate and study the generated graphic structures in
multiple representations and at all levels of detail. We have started to design learning
activities centered on the use of the tools and designed to develop organically the
knowledge needed to use them powerfully.

4. Topic Areas

Our main research activity is the exploration of the ideas and methods of chaos and
nonlinear dynamics with a view toward developing a conceptual framework and
exemplary materials in key and representative topics suitable for introduction into high
school mathematics courses. The materials that will be developed are new but they grow

243

naturally out of traditional high school content. The sample topics described here
illustrate the kinds of possibilities we envision and the approach and flavor of our
presentations.

We introduce the subject of mathematical chaos to students by first familiarizing them
with three fundamental concepts: iterated functions, maps, and fractals. Students then
explore a wide variety of applications of chaos, e.g. to purely mathematical problems such
as finding the roots of an equation; to the modeling of non-linear systems, such as the
growth and decline of animal populations, the spread of infectious disease, and the
beating of the human heart; and to the creation of fractal art and music.

The phenomenon of chaos is intimately linked to the behavior of functions, often very
simple ones, when iterated many times. Only one of three things can happen: successive
iterates of the function may approach a single fixed point; they may converge to a limiting
orbit of points; or they may behave more erratically, never quite returning to a value they
have taken on before. In the last case the iterated function sometimes displays an
extremely sensitive dependence on initial conditions, so that neighboring starting points,
when operated on repeatedly by the function, diverge very rapidly from one another, and
all information about the starting point is lost. Behavior characterized by such an extreme
sensitivity to initial conditions has been termed chaotic. The successive values taken on
by the function closely resemble a random sequence, and indeed chaotic functions can
be used as pseudorandom number generators. Because of their sensitive dependence
on initial state, mappings of chaotic functions often display nearly self-similar structure on
an infinitesimal scale, giving rise to curves and surfaces of fractional dimension, or
fractals.

5. Mapping

A logical starting point is the concept of a map. To aid students in visualization as well
as computation, we are building a multipurpose mapping tool (known as "MultiMap") that
allows any figure drawn in one window on the Macintosh screen to be mapped into
another according to whatever rule the user chooses. This mapping will be done very
rapidly, in such a way that drawings made either free hand or with the aid of the computer
in one window will simultaneously be mapped into any window or windows linked to the
first.

We generalize the familiar notion of geographic maps by introducing an activity that
combines two maps into one. For example, we can set up two windows, one of which
contains a portrait of John F. Kennedy, the other a portrait of Marilyn Monroe. We can
then map each of these onto a third window, in which we create a composite "map"
consisting of a weighed average of the two input portraits (which can be accomplished
quite easily by identifying key features - eyes, nose, etc. - on each of the two inputs).
By moving a "scroll bar" or through some other suitable interface, students can modify the
artificial portrait to look more or less like either of the two originals.

Using an image digitizer, we can input photographic portraits of individual students
and transform them in interesting ways with MultiMap. For example, we can stretch their
length twofold while halving their width, simulating the operation of a rolling pin on dough.

244

We can cut the resulting map in half and stack the right half over the left half, so as to
restore the original dimensions. We can then iterate this process a number of times and
observe how the original likeness becomes unrecognizable and apparently
unrecoverable, an ostensibly random pattern. But this iterated map is reversible, and the
original likeness can be restored by iterating the inverse map the same number of times
- the effect seems magical.

6. Newton's Method

Iterated maps are useful in more traditional mathematical activities, such as finding the
roots of equations. Newton's method is a well-known iterative procedure for locating the
roots of equations in the complex plane. It can serve as an alternative to the quadratic
equation formula routinely taught in high school algebra. The method has the dual
advantage that it can be generalized to cubic and higher-order polynomial equations, and
that it can be motivated and justified to students via an appropriate graphical
representation.

We introduce Newton's method in the context of quadratic equations, with which
students are already familiar, presenting it initially merely as an alternative to the use of
the usual, somewhat mysterious, formula. The students start by making an initial guess.
The method then involves the repeated application of an algorithm which ultimately
converges on one or the other of the two roots.

We then pose the question: how does the choice of the initial guess determine the
future behavior of the process? In particular, which of the two roots does the process
ultimately converge on, and which initial guesses, if any, will result in its never finding a
root? In order to answer this question, students use MultiMap and other graphic software
tools to determine by trial and error the regions in the complex plane for which starting
guesses converge to one or another of the roots of the equation. This is a legitimate
research problem, first solved by Cayley (Peitgen, 1982).

For quadratic equations the solution is not surprising: connect the two roots by a
straight line segment and construct the perpendicular bisector of this segment. Then the
"basin of attraction" of each root (that is, the set of all initial points for which the method
converges to that root) is simply the open half plane on one or the other side of the
perpendicular bisector. Points on the bisector itself do not converge to either root and in
fact their behavior is chaotic, in the sense that the behavior under iteration of neighboring
points diverges very rapidly, so that all information relating to the initial point is lost. In
modern terminology, the perpendicular bisector comprises the so-called Julia set of the
iterated rational function that characterizes Newton's method.

This new kind of exploration, in which one asks about the behavior of an iterated
function at each point in the complex plane, requires a new kind of software tool - one
capable of producing a variety of new kinds of mappings. The most obvious mapping
simply assigns a different color to each pixel on the screen depending on the behavior of
the iterated function at the corresponding point on the complex plane. Thus, a natural
map of the situation described above is to color all points in the basin of attraction of one

245

of the roots of the quadratic equation red, say, and of the other, green. This procedure
divides the plane into two equal regions, separated by a straight line.

The development to this point has been straightforward and appears to be general. In
fact, in Cayley's original paper he expresses the hope that he will soon be able to solve
the equivalent problems for cubic and higher order equations. He never did so and the
reason becomes, with the advent of today's computing power, graphically obvious. We
show students how to generalize Newton's method from quadratic to cubic equations, and
give them the task of mapping out the basins of attraction of each of the three (complex)
roots. The resulting map is a quite unexpected and extremely complicated fractal picture.
The reason for this is simply stated, though surprising. It can be rigorously shown that in
the neighborhood of the Julia set (that set for which the function "cannot make up its mind"
which of the three roots to converge to) there must be points belonging to each of the
three basins of attraction. In geometric terms, then, (coloring the roots, say, red, green,
and blue) at any point where two regions (say red and green) come together, the other
(blue) region must meet both of them, as well. After some consideration of this startling
statement the reader may well come to the conclusion that this situation is impossible. It is
not, but it does require the iniroduction of fractals.

7. Fractals

MultiMap supports recursive maps. For example, it can map window A onto window B
and then map window B back onto window A. This makes it a valuable tool for the study
of iterated functions. For example, students can use MultiMap to construct pictures that
contain "infinitely many" reduced copies of themselves. Such pictures can be constructed
simply by creating a reduced scale mapping from one window to another, and then
mapping the second window back onto the first, appropriately positioned. The iteration of
these "condensation maps" often results in the creation of pictures that mimic such
naturally occurring objects as ferns and clouds (Barnsley, 1986). In addition to being
inherently interesting to students, these pictures illustrate the important idea of invariance
under a scale transformation - an idea that underlies the concept of a fractal.

"Fractal" is the name coined by B6noit Mandelbrot to designate the convoluted curves
and surfaces that exhibit approximate self-similarity at arbitrary scales (Mandelbrot, 1983).
In a sense that Hausdorff and others have made explicit, such structures can be thought of
as having non-integral dimensions. They are quite amazingly complex and often very
beautiful. By virtue of its ability to generate recursive maps, MultiMap becomes a kind of
"Fractal Construction Set" that enables students to create, modify and investigate fractals
as objects of interest in their own right, even before they discover their deep connection
with the phenomenon of chaos.

8. Modeling Nonlinear Processes

The properties of simple functions iterated many times are wonderful, unexpected and
beautiful, but they may be expected to fall outside the set of inherently interesting topics
for most high school students. To someone for whom the solving of equations - even

246

beautiful ones - is not particularly motivating, the fact that this task can be accomplished
through the iterating of a simple function is unlikely to be of lasting interest. It is important,
therefore, as we explore the spectrum of possible topics and activities, to move on to
situations in which the iteration of a function implies something more than merely finding
the roots of an equation. An obvious choice, and one that has rich mathematical and
scientific applications, is to model a variety of processes that evolve in time. Each
successive iteration of the function may be taken to represent a fixed time interval. If this
interval is long enough to produce significant changes in the variables the resulting
equation is a finite difference equation; if it is short on this scale, we consider it as
approximating a differential equation. Though the mathematics of these two cases is in
some important respects quite different, many of the techniques employed are the same,
and we introduce both to students. We start by describing an example from ecology.

Consider a hypothetical population of, say, rabbits that has the property that every year
on the average the number of rabbits becomes R times what it was the year before.
Taking the population to be P, we model the time dependence by the function f(P)=RP.
For R<1, repeated iteration of this function leads to an inexorable decay of the population
toward 0 - all the rabbits die out. R=1 models a static, unchanging population, while R>1
leads to a Malthusian exponential growth in the rabbit population - a situation that would
be disastrous were it not totally unrealistic. Obviously, many factors in the environment
militate against such unbridled growth, scarcity of natural resources and the presence of
predator species among them. To take such limiting factors into account, we modify our
model to the form f(P)=RP(1 - P), where we have normalized the population to some
arbitrary "carrying capacity" and are therefore interested only in values of P between 0
and 1. Inasmuch as this change obviously restricts the rate of growth for values of P near
1, we might expect that for any particular value of R the population will grow to reach a,
corresponding limiting value, remaining in equilibrium at this value forever. This
expectation is indeed borne out for small values of R.

But as we increase R some very surprising things happen to our model rabbit
population. As R passes through the value 3.0, the population starts to oscillate between
two different limit points, taking on each of them at alternate generations. (This non-
intuitive result is, in fact, a good approximation to the behavior of some real animal
populations.) This "bifurcation phenomenon" repeats itself. As R continues to grow, the
number of limit points becomes 4. Shortly thereafter the solution bifurcates again and we
have 8 limit points, then 16 and so forth. If we take the values of R at which these
successive bifurcations happen, we find that they asymptotically converge to a
geometrical series which itself has a definite limit point. At this limit point the behavior of
our model rabbit population becomes "chaotic": the population no longer settles down to
any particular limit point no matter how long we look. Furthermore, in this regime, if we
start from two infinitesimally close initial populations the future behavior of these
populations will diverge in finite time, making accurate prediction impossible in the
absence of total information about initial conditions.

If we continue to increase R, we find additional peculiarities. Regions of all
periodicities appear, interspersed with additional regions of chaotic behavior. The most

247

remarkable fact is that all of this complexity - bifurcations, chaos, various kinds of
periodicity - is universal, in the sense that the exact nature of the underlying equation is
not critical. This universality, first discovered by Feigenbaum approximately 15 years ago
(Feigenbaum, 1980), is at the heart of the regularities in chaos that have characterized
our growing knowledge of the whole field of nonlinear dynamics.

Without the computer it would be unrealistic to attempt to introduce differential
equations to the high school mathematics curriculum. However, once one has made a
connection in students' m-nds between iterating a function and modeling a time-evolving
process it makes very little difference whether the time interval represented by the function
is long or short. The major difference is that changes in the system being modeled
become continuous, rather than discrete. If we visualize the state of the system as a
localized dot on a graph, we will observe that dot to move continuously, rather than
hopping from point to point. Moreover, the system need not be restricted to one
dimension. If we have two populations, say rabbits and foxes, we can graph one along x
and the other along y.

By generalizing our description of a system in this way, we introduce the notion of
phase space as the collection of variables that are necessary to describe the system.
This concept is a very powerful one. It can be applied to model the behavior of a great
variety of nonlinear systems. For example, the spread of infectious disease has been
modeled in (Schulman, 1986) using a simple chaotic equation (which has also been
applied to galaxy formationi). The fractal growth of snowflakes is explored in (Nittmann,
1986). Aspects of the economics and politics of the arms race can be probed using the
same equation we introduced to describe rabbits (Saperstein, 1984). Also, Skarda et al
(Skarda, 1987) use chaos to describe how rabbits smell things.

With the advent of machine-based laboratories - inexpensive probes connected to
computer programs for carrying out real-time data collection and processing tasks -
many of the most interesting chaotic systems can now be studied directly in the
classroom. Using an MBL system, we are designing classroom projects that involve the
collection of real data generated by nonlinear systems. Our initial focus is on the double
pendulum, a dynamical system consis,. ig of two pendulums, one suspended from the
bottom of the other in a way that enables both to rotate independently through angles up
to 360 degrees. We have built and instrumented this complex "trapeze" toy. It exhibits
many modes in which the excursions made, particularly by the lower pendulum, are
complex, surprising, and fascinating to watch. This relatively straightforward mechanical
device provides an ideal laboratory tool for studying the structure of chaos in physical
processes. The chaotic dynamics exhibited in this laboratory system mirrors that
characteristic of more complex real-world systems. Without MBL it would be nearly im-
possible to collect all the data required, and to develop graphic and analytic
characterizations of the behaviors. However with computers, we can analyze the motion
of such a double pendulum in real time in the classroom. Experiments of this kind
demonstrate the applicability to real-world situations of the ideas behind mathematical
chaos, thus bridging the largely artificial gap that has grown up between mathematics and
science.

248

Acknowedgments

This project is supported, in part, by the National Science Foundation. The opinions
expressed here are those of the authors and not necessarily those of the Foundaticn.
Apple Computer, Inc. has awarded the project a grant of two, Macintosh Il computer
systems and a LaserWriter II NTX printer to support project research and software
development.

Bibliography

Peitgen H.O., D. Saupe, & F. v. Haeseler, "Cayley's Problem and Julia Sets",
Mathematical Intelligencer, Vol. 6, No. 2 1982, pp. 11-20.

Mandelbrot, Benoit, The Fractal Geometry of Nature, Freeman, N.Y., 1983.

Barnsley, Michael, "Making Chaotic Dynan-ical Systems to Order", in Chaotic
Dynamics and Fractals, M.F. Barnesley & S.G. Demko, eds., Academic Press, N.Y.,
1986, pp. 53-68.

Feigenbaum, Mitchell J., "Universal Behavior in Nonlinear Systems", Los Alamos,
Science, Summer 1980, pp. 4-27.

Schulman, Lawence S., & Philip E. Seiden, "Percolation and Galaxies", 'Science, Vol.
233, 25 July 1986, pp. 425-431.

Nittmann, Johann, & H. Eugene Stanley, "Tip Splitting without Interfacial Tension and
Dendritic Growth Patterns Arising from Molecular Anisotropy", Nature, Vol. 321, 12 June
1986, pp. 663-668.

Saperstein, Alvin M. "Chaos - A Model for the Outbreak of War", Nature, Vol. 309, 24
May 1984, pp. 303-305.

Skarda, Chrystine A., & Walter J. Freeman, "Flow Brains Make Chaos in Order to Make
Sense of the World", Behavioral & Brain Sciences, Vol. 10, No. 2 1987, pp. 161-195.

249

Iterated Function Systems and the Inverse Problem of
Fractal Construction Using Moments

Edward R. Vrscay and Christopher J. Rochrig

Department of Applied Mathematics, Faculty of Mathematics
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Abstract

Let K be a compact metric space and wi:K-K , l<i-N, be a set of contraction maps,
with assigned probabilities pi. This contractive iterated function system (IFS) possesses a
unique and invariant attractor set A. Given a target set S, the inverse problem consists in find-
ing an IFS {K,w,p} whose attractor A approximates S as closely as possible. We examine a
numerical method of approximating a (fractal) target set S by minimizing the distance between
the moments of S and A. This amounts to a nonlinear optimization of the parameters defining
the IFS. In this way, both the geometry and shading measure encoded in S may be simultane-
ously approximated in a quantified procedure.

1. Introduction

A set of contraction maps defined over a bounded subset of R n or C" possesses a unique,
compact "fixed point" set A, the attractor, which is invariant with respect to these maps: the
set A is a union of the (distorted) copies of itself generated by the maps. This idea was
developed by Hutchinson (1] to discuss self-similar fractal sets, and then extended and general-
ized by M. Barnsley, co-workers, and others [2-91. The result, an iterated function system
(IFS), is a powerful tool for bth the construction of fractal sets and the reconstruction or
approximation of sets which exhibit fractal-like properties over some scales; for example, leaves,
trees and clouds. We draw the reader's attention to Barnsley's recent textbook on IFS [7], as
well as to two papers (4,8] which summarize the method nicely for a general readership. The
essence of the IFS method, provided by the Collage Theorem [3,7), is to exploit any self-tiling
properties of the set S under consideration. From a practical aspect, the representation of com-
plex images in terms of a small number of IFS parameters can represent a huge degree of data
compression (4].

Given an initial approximation of maps and associated probabilities whose attractor A is to
approximate the target set S, we know of no deterministic method of varying these parameters
to optimize the approximation, either in Htausdorff metric or in shading. In this report, we pro-
pose that a method in the spirit of the classical moment problem can provide such a quantitative
algorithm for the approximation of sets. In this way, both the geometric as well as shading
information encoded in the target set S could be used simultaneously. The shading, considered
as a distribution, defines a sequence of power moments G,. Empirically, the distribution as well

I

as its moments could be obtained by digitization of the image. An IFS attractor set A supports
a balanced measure whose moments gi can be computed recursively from the parameters defin-

ing the IFS. We thus seek to approximate the measure living on S by minimizing a "distance"
between the two moment sequences {Gi} and {gj}. The optimization procedure searches the

parameter space of affine maps and probabilities to minimize the distance in moment space.
The results of some preliminary investigations of sets in R and R 2 are presented.

2. Iterated Function Systems, Attractors and Invariant Measures

Here, we outline very briefly the major definitions and properties of IFS. In the discussion
beiow, (K,d) denotes a compact metric space with metric d. In applications, K will be a
bounded subset of R n (n=1,2). Also we let S denote the set of all compact subsets of K. For a
more detailed discussion of the topological concepts involved, we refer the reader to the book of
Falconer (10].

The distance between a point xEtK and a set ACK will be denoted as

d(x,A) = inf d(x,y) . (2.1)
YEA

The Hausdorff metric between two sets A,BCK is defined as

h(A,B) = max [sup d(x,B), sug d(y,A)I. (2.2)
x64 3,

Let the c-ball of a set ACK be defined as A, = {xEK : d(x,A)<c}. Then h(A,B) < C implies
that BCA(and ACB,. The elements of the set S form a complete metric space with metric h.

Now, let w = {wl,w 2, w N ,wO} denote a set of N continuous contraction maps on K, i.e.
wi:K-+K and

d(wj(x),wi(y)) <sid(xy) V xyE, i=1,2,...N, (2.3)

where 0<si<l. Associated with these maps is a set of probabilities p = {P1,P2, & A ,PN}, which
will become relevant below. The system {K, w, p} defines a contractive IFS on K. Now
define the action of w on a set SCS as

N
w(S) U w(s). (2.4)

and the iteration sequence

wn+ _) w(Wn()) , n=1,2,.... (2.5)

(For example, if S is a singleton point, then w(S) is a set of N (not necessarily distinct) points,
w 2(S) a set of N 2 points, etc..)

Theorem 2.1 11,2]: There exists a unique, compact set ACS, the attractor of the IFS
{K,w} (independent of p), such that w(A)=A and wn(S)-+A as n-*ooin Hausdorff metric, for
all SCS.

Hutchinson [1] shows that w is a contraction mapping in the complete metric space S,
hence it possess a unique "fixed point" ACS. Barnsley and Demko [2] gave a proof in terms of
coding sequences. From Eq. (2.4), the property w(A)=A shows that A is expressible as a union,
or tiling, of (distorted) copies of itself. Some examples are:

251

1. K = [0,11, w 1(x)=x,/3, w2(x)=x3 + 2A3: A is the ternary Cantor set.

2. K - [0,112 C R 2, wI(x,y)=(y x,1y), w2(x,y)=(yx+ ,yy), w3(x,y)=(Yx+, y+ \/'3):
A is the Sierpinski gasket shown in Fig. 1(a).

3. K as in 2, w1, ... w4 linear affine transformations of the form in Eq. (3.7) below, with the
coefficients and probabilities listed in Table 1: A is the spleenwort fern attractor shown in
Figure 1(b).

The probabilities p associated with the maps wi will now be relevant in determining the
invariant balanced measures supported on the attractor A. These measures are central to our
moment method approach. We begin by introducing the following algorithm which is useful in
generating pictures of A on a computer screen.

The "Chaos Game": Pick an x 0ECJ: and define the iteration sequence

wn (= Wa n=0,1,2,..., (2.10)

where the index o, is chosen randomly from the set of indices {1,2,...n), with the probability of
choosing i being pi. If we plot the sequence {x,} for n>n>>1, (say n' = 50), on a computer
screen, then a pictorial representation of the attractor A will appear. This follows from

Theorem 2.2: Almost every orbit {x,} is dense on A.

The sequence must be attracted to A by the contractivity of the w map. The density of
orbits follows from a symbolic dynamics-type argument: Each point yEA possesses a (not neces-
sarily unique) coding which will be matched to an arbitrarily long sequence of digits (implying an
arbitrary closeness to y) with probability 1 by the i.i.d. sequence {a}. The computer image,
however, is more than a picture of the geometry of set A. The probability that each pixel p(ij)
defining A is visited by the random walk affords an approximation to an invariant measure sup-
ported on A and defined by the IFS. This is a consequence of the ergodic nature of the dynami-
cal system defined in Eq. (2.10), as we outline below.

Let B(K) denote the set of Borel subsets of K. The "chaos game" essentially defines a
discrete time Markov process {K, w, p} defined by

N
P(x,B) = p6 .(.)(B), (2.11)

i-I

where P(x,B) is the probability of transfer from xEIC to the Borel subset BCB(K) and
6b(B) = 1 if yEB and 0 if yEB. For a contractive IFS, there exists a unique probability measure
pi such that

p(B) = f P(x,B)dp(x) (2.12)
K

for all Borel subsets B of K [2]. This measure p is referred to as the p-balanced measure of the
IFS (K,w,p) and its support is the attractor A. Elton has recently shown 15] (for even the
weaker condition of "average contractivity" of the wi maps) that the Markov process is ergodic
(not in the sense of indecomposability, but in the Birkhoff sense). Starting at any x0EK, the
usual time-averaged distribution of the first n+1 points in the trajectory of Eq. (2.10), .e.

I n
V. = r, k (2.13)

n41k-0

where 6, denotes a point mass measure at x, converges weakly to the balanced measure /I as

252

n-4oo This accounts for the "picture" of the balanced measure yielded by the chaos game: Let
the set B be the characteristic function of the subset of the plane represented by a pixel p(ij).
Then the probability of visiting p(ij) is proportional to p(B).

A noteworthy property which is a direct consequence of Eq. (2.12) is invariance of the
measure [2), i.e. for an integrable function f:K---K, f/_V(A,p),

N
f f(x)dp(x) =, Pif (foWi)(x)dp(x). (2.14)
A i-O A

3. Moments of the Balanced Invariant Measure

If {K,w,p} is a contractive IFS with attractor A, then the moments of the associated p-
balanced measure supported by A are given by the (Lebesgue) integrals

X1 1 i 2 . . Im

gii 2... = f xx 2 x'ndp . (3.1)
A

For convenience, the measure is assumed to be normalized, i.e. goo.o = f dji = 1. We shall be
A

concerned primarily with IFS on the line and in the plane. In all cases, our attention is res-
tricted tolinear (affine) maps wo. There is a twofold advantage to this choice: (i) the geometry
associated with such maps is simple, and (ii) their form permits a recursive computation of the
moments, as will be shown below.

3.1 Moments of IFS Attractors Embedded in R

We consider a general IFS defined by the linear maps

w,(x) = six + ai , 1,i I < 1, i=1,2,...,N, (3.2)

with associated probabilities pi. From Eq. (2.13), setting f(z) = x", we have

N
g= = f x"dp() = Epif (six + a,)ndu(.). (3.3)

A i-1 A

Expanding the polynomial, collecting like powers in z and integrating, we obtain the following
recursion relation

N N
(1 - = (3.4)

i-1 j-l1 -I

(This formula, also given in [21 and 131, is valid for complex maps w' in Eq. (3.2), with
8i, ai E C.) By the assumptions in our definition of a contractive IFS, the coefficient of g, on the
left cannot vanish. Thus, the moments may be computed explicitly and uniquely by this recur-
sion formula, with the initial value go = 1. Conversely, since the attractor A is bounded, the
moment problem is determinate, and an infinite sequence of moments g,, n=0,1,2... determines

a unique probability measure 1121. The moments g,, in Eq. (3.4) may be regarded as functions of

the IFS parameters sk,ak,pk, k=1,2,...N, i.e. gn = gn(s,a,p). Eq. (3.4) can be differentiated an
arbitrary number of times with respect to any of these parameters (or combinations thereof).
We formalize this compactly as follows.

Given an N > 0, and the IFS on K C R in Eq. (3.2), define the associated parameter
space of 3N-tuple vectors ir = (s,a,p), that is,

253

r = (7r,,... ,r3N) = (s,...,sN,al,...,aNp,...,pN). (3.5)

The feasible parameter space, IIfJ, (the subscript refers to the embedding space R) will be
defined as the open subset of R 3N determined by the conditions

NIs il < 1, 0 < pi < 1, E pi = 1, (3.6)

No conditions on the ai are necessary: K may be rescaled to ensure that wi:K C K.

Theorem 3.1: The moments g,: I N -+ R are smooth functions of the parameters 7ri.

Proof: from the form of Eq. (3.4).

3.2 Moments of IFS Attractors in R 2

We now consider general IFS as defined by the linear affine transformations

= [a1(i) a21 (i) 1fj + fb(i)j i-12,N, (3.7)
Wi J [a 12(i) a 2(' y b(i)jJ I+ .

with associated probabilities pi. Eq. (3.7) will be written in the compact form

wi(x) = Aix + bi, (3.8)

The matrices Ai must be contractive. The feasible parameter space, ' N, will be a suitably
defined open subset of R 7N. (The parameters irj are also standardized, as in Eq. (3.5).)

Setting f(x) = xmy" in Eq. (2.5), we have the following relation for the moments of the
attractor:

g.= fxmy"dy (3.9)
A

N
= Npif [anl(i)x + al 2(i)Y + bl(i)]m ja21(i)x + a22(i)Y + b2(i)]'dp .

i-I A

Expanding the polynomials and integrating yields a complicated recursion relation for the g,,:
N [•r -t " •• •

gmn. = E , ('T)al(k)"n M (a,2(k)"2bj(k)'n-'--"gij, X-[--O (3.10)

k-i ni -I 2J

(7)a2 (k'-i(n-1)2(C ~ 2k);j-'[J,-o 1 o

Because of the cross terms occurring in the products of Eq. (3.9), we can not solve for each gn
explicitly, but must proceed as follows. From goo = 1, write down the two equations of (3.10)
corresponding to m=O, n=1 and m=l, n=O, then solve simultaneously for the unknowns g01

and g10. The procedure is then continued: solve a system of M+1 linear inhomogeneous equa-
tions in the unknowns {gOM,glAfM-, ... ,gAfo) from a knowledge of the prevously computed

gn, m+n<M. The derivatives of the moments with respect to the parameters may also be
computed in a recursive, albeit complicated manner. Smoothness of the moments also follows
from Eq. (3.10), although some extra algebra is required to see that the matrices defining the
relevant linear systems for the derivatives are nonsingular.

254

4. The Inverse Problem of Fractal Construction

4.1 Self-Tiling and the Collage Theorem

Up to this point, we have been viewing the IFS theory from only one direction, i.e. for a

given contractive IFS {K,w,p}, there exists a unique attractor A with a p-balanced measure.
We now consider the important inverse problem: given a set S, does there exists an IFS for
which S is an attractor, or can S be approximated by an attractor A of an IFS to some arbi-
trary accuracy? The Collage Theorem gives insight to this problem.

Collage Theorem 13,71: Let SCS and suppose that there exists a set of maps wi so that
Eq. (2.3) holds, and

h s,Uw(S)l <C. (4.1)

Then,

h(S,n) < (4.2)

where . =- max{sj) < 1, and A is the attractor of the IFS {K,w}.

In other words, if a set S can be tiled with copies of itself to an arbitrary accuracy, then S
is close to the attractor A of the IFS which produces the tiling. A natural procedure to follow,
then, is to examine S for any self-similarities, determine the mappings wi which effect these
transformations, also ensuring that an appropriate number of maps are being employed. In this
way, one attempts to approximate the geometric structure of S as best one can, i.e. minimize
the Hausdorff distance h(SA). By varying the probabilities pi associated with the maps, the
balanced measure, i.e. the shading on S, may then be varied. The method has been very effec-
tively developed by M. Barnsley and coworkers. It has been described in fair detail in 14,7,81. To
our knowledge, however, there is no direct quantitative relationship between the IFS parameters
w and p and the Hausdorff distance h(S,A) in Eq. (4.2). As such, there appears to be no definite
algorithm which could indicate how these parameters should be modified to (i) further minimize
h(S,A) or (ii) better approximate the shading measure on S. The use of moments, as outlined in
the next section, may provide a useful and quantitative scheme in this regard.

4.2 Moment Methods

For simplicity, we first focus on the inverse problem of construction on R: extensions to
the plane follow.

Suppose that we are given a target set S, scaled, for convenience, so that S C 10,11, and
supporting a measure v, with moments G,, fxdv. Diaconis and Shahshahani 1111 proposed

S
that a knowledge of the moments g, = G, could, in principle, be used to solve for the IFS
parameters in Eq. (3.4). However, these equations are highly nonlinear with many solutions, and

initial attempts at solving them have proved fruitless 1131. The complexity of this approach

increases enormously in the two-dimensional case, Eq. (3.10).

As such, we have investigated an approach which seeks to minimize the "distance" between
the true moments, G,, and the moments, gk, of a p-balanced measure supported by the attrac-

tor of an IFS. For a fixed N, the number of maps in the IFS, and M, the number of moments

255

G, we wish to use, we have considered the (squared) Euclidean distance in "moment space",
defined over the feasible parameter space ITN:

D(7r) - % (gi(r) - G,)2h(i) , (4.3)

where h:Z+ -+ R is a weight function. The inverse problem is now cast as a problem of minim-
izing DN over IILN. The nature of this function is complicated and has not been well explored,
even in the more trivial cases. (It is smooth, but by no means necessarily convex.) Only in the
limit M--oodoes D--0 imply the weak-* convergence pt-wv. For finite M, this is no, the case,
nor does a small value of D necessarily imply a "closeness" of the two sets.

Note that the derivatives dgl/dirj, may be obtained in closed form, thus providing us with
the vector, grad DN . As such, gradient methods for optimization may be employed. (Our early
investigations involved rather naive steepest descent method.) The numerical results reported
here were obtained using the Harwell Library FORTRAN Subroutine VE01AD. This routine
performs a generalization of Davidon's method [141 which uses the gradient, approximates the
hessian of D and deals with linear inequality constraints by projection techniques. Table 2
presents some sample calculations where the target set S is the ternary Cantor set on [0,11, with
uniform measure. The initial approximations to S are (i) A=[0,11 with uniform measure, (ii) A a
Cantor-like set with nonuniform measure. In both cases, the moments Gi, i=1,...M=20 were
employed. The weight function was simply taken to be h(i) = 1, i.e. equal weighting of the
moments. Also presented are the values of the moment distance function DN .

The inverse problem in R2 represents an even more interesting, as well as more difficult,
computational problem. The number of parameters irk grows as 7N. As well, the objective
functions D1M exhibit complicated structure, with a proliferation of local minima for which
D > 0. There is also the possibility of a "degeneracy" of representations due to special sym-
metries of the target set S. We illustrate with a simple example: Consider the unit square on
[0,1]X[0,1], with uniform measure, as the target set S. There are a continuum of possibilities of
tiling this set with affine copies of itself. For example, any point (a,b) in the interior of this set
determines four rectangles having this point as a common vertex, each of which are affine copies
of S. In addition, each of these copies may be generated from S in a non-unique way. One
could also imagine the existence of interfering minima lying on rays in parameter space, again
for which D > 0.

In Figure 2 are presented some "snapshots" of the optimization method when S is the
spleenwort fern attractor of Fig. 1(b). The reference moments GU, i+j '5, were employed, i.e.

M=14. They were calculated from the fern parameters in Table 1 using the moment equations
(3.10). The approximating sets A are shown in dark, superimposed ovcr the lightly shaded tar-
get set S. The squared distance in moment space D as well as the number of iterations, i.e.
calls to the optimization subroutine, are given with each approximation. The degree of accuracy
achieved with a relatively small amount of moments is encouraging. The entire calculation
required about 3 min. CPU on an IBM 4341 mainframe.

5. Summary and Acknowledgments

We have outlined the theory and preliminary application of a moment-type method to the
inverse problem of fractal set approximation with iterated function systems. Idealistically, one
would hope that the method would be relatively insensitive to the accuracy of the initial

256

approximation to the IFS. As such, it could eliminate a dependence on an "artificial intelligence"
to ascertain any rough geometrical symmetries of the target set S. The study is in its infancy.
There are many avenues to be explored, for example: (1) a more detailed investigation of the
objective function D in Eq. (4.3) for very simple cases, e.g. Cantor sets on the line, (2) examining
various weight functions h(i), (3) how the moment method handles "redundancy", e.g. how will
it tolerate five IFS maps to approximate a four-map fern, (4) optimization routines which may
improve the convergence of the method. The method of simulated annealing, which is
employed in the Barnsley image compression method [4], is being explored to possibly bypass the
problems encounted with interfering local minima. Also being formulated (with B. Forte) is a
maximum-entropy-type principle [16] to optimize the information extracted from a given set of
moments G,.

We wish to thank Professors B. Forte, J. Elton and G. Mantica for stimulating conversa-
tions and encouragement in pursuing this problem. This work was supported in part by an
Operating Grant (ERV) from the Natural Sciences and Engineering Research Council of
Canada.

References

[1] J. Hutchinson, Fractals and self-similarity, Indiana Univ. J. Math. 30, 713-747 (1981).

[2] M.F. Barnsley and S. Demko, Iterated function systems and the global construction of frac-
tals, Proc. Roy. Soc. Lond. A399, 243-275 (1985).

[3] M.F. Barnsley, V. Ervin, D.P. Hardin, J. Lancaster, Solution of an inverse problem for frac-
tals and other sets, Proc. Nat. Acad. Sci. USA, 83, 1975-1977 (1986).

[4] M.F. Barnsley and A.D. Sloan, A better way to compress images, BYTE Magazine, January
issue, 215-223 (1988).

[5] J. Elton, An ergodic theorem for iterated maps, Ergod. Th. and Dynam. Sys. 7, 481-488
(1987).

[6] M.F. Barnsley, S.G. Demko, J. Elton and J.S. Geronimo, Invariant measures for Markov
processes arising from iterated function systems with place-dependent probabilities, Ann.
Inst. H. Poincard (to appear).

[7] M.F. Barnsley, Fractals Everywhere, Academic Press, NY, 1988.

[8] M.F. Barnsley, Fractal modelling of real world images, in The Science of Fractal Images,
by H.O. Peitgen and D. Saupe Edit., Springer Verlag, NY (1988).

[9] W.D. Withers, Differentiability with respect to parameters of average values in probabilis-

tic contracting dynamical systems, preprint (1987).

110] K.J. Falconer, The geometry of fractal sets, Cambridge University Press (1985).

[11] P. Diaconis and M. Shahshahani, Products of random matrices and computer image gen-
eration, in Random Matrices and Their Applications, Vol. 50, Contemp. Math., AMS,

Providence, RI (1986).

[12] N.I. Akhiezer, The Classical Moment Problem, Hafner, NY (1965).

113] D. Bessis and G. Mantica, private communication.

257

[141 P.E. Gill, W. Murray and MMH. Wright, Practical Optimization, Academic Press, NY

[151 S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing, Science
220, 672 (1983).

(16) L. Mead and N. Papanicolaou, Maximum entropy principles, J. Math. Phys. 25, 2404
(1984) and references therein.

Figure 1(a): Sierpinaki Gasket Figure 1(b): Spleenwort Fern

Table 1: Spleenwort fern parameters

1 0.00 0.00 0.00 0.16 0.50 0.00 0.01
2 0.20 -0.26 0.23 0.22 0.40 0.05 0.07
3 -0.15 0.28 0.26 0.24 0.57 -0.12 0.07
4 0.85 0.04 -0.04 0.85 0.08 0.18 0.85

Table 2(i)
Step 81 82 a, a2 PI P2 D

1 0.500 0.500 0.000 0.500 0.500 0.500 4.439D-02
5 0.499 0,537 -0.019 0.504 0.488 0.514 1.719D-03

*10 0.481 0.449 -0.116 0.559 0.437 0.568 0.608D-05
*20 0.224 0.376 0.028 0.625 0.466 0.535 7.102D-07

30 0.248 0.363 0.023 0.637 0.476 0.525 4.462D-07
*40 0.279 0.354 0.014 0.647 0.484 0.517 2.773D-07

50 0.302 0.346 0.008 0.655 0.490 0.510 1.102D-07
60 0.328 0.337 0.001 0.663 0.497 0.503 2.068D-08
70 0.333 0.333 0.000 0.667 0.499 0.500 1.007D-13

258

Table 2(11)

Step 81 82 a1 a2 P1 P2 D
1 0.300 0.300 0.000 0.300 0.300 0.700 6.464D-01
5 0,269 0.429 -0.015 0.559 0.340 0.658 3.805D-02

10 0,294 0.422 -0.034 0.579 0.429 0.570 3.057D-05
20 0.295 0.347 0.010 0.654 0.487 0.512 1.930D-07
30 0.314 0.340 0.005 0.660 0.492 0.506 7.462D-08
40 0.333 0.333 0.001 0.667 0.498 0.500 1,876D-08
50 0,333 0.333 0.001 0.667 0.498 0.500 1.633D-12

1. D=0.422 5. D=0.888D-03

1.3L

62. D=0.220D-07

Figure 3

259

Working with ruled surfaces in solid modeling

John K. Johnstone
Dept. of Computer Science, Johns Hopkins Univ., Baltimore, MD 21218

Abstract. The interplay between algebraic geometry and graphics/solid modeling is a
natural and strong one. This paper addresses the topic of ruled surfaces, a class that
has long been of interest to the mathematical community, and brings it more squarely
into the realm of computer science by giving constructive algorithms for ruled surfaces.
These algorithms allow ruled surfaces to be used more easily in a solid modeling system.
Specifically, we show (a) how to identify that a surface is ruled from its equation (b) how
to find the generator through a given point of a ruled surface and (c) how to find a directrix
curve of a ruled surface. As an example of how these algorithms can be put to use in a
solid modeling environment, we show how to parameterize a ruled surface.

Ruled surfaces share properties of both curves and surfaces, which make ruled surfces
a very useful class in the difficult transition between curves and surfaces in solid modeling.
They can be used to extend algorithms for curves (which are easier to develop) to algo-
rithms for surfaces. The mathematical theory of curves and surfaces can continue to guide
their incorporation into solid modelers although, as is shown in this paper, computer scien-
tists will often have to develop constructive techniques to replace existential mathematical
statements.

1 Introduction
Surfaces are more complicated objects than curves. Consequently, a number of problems
in geometric modeling have been solved for curves but not for surfaces. Ruled surfaces
(which are surfaces that can be generated by sweeping a line through space and include
planes, cylinders, cones, saddles, and other important surfaces) are a useful subclass of
surfaces, because they bridge the gap in complexity between curves and surfaces. Since
they can be defined by a plane curve (the directrix curve) lying on the surface, algorithms
for ruled surfaces tend to be easier to develop than algorithms for arbitrary surfaces.

Ruled surfaces are not only of interest because of their kinship to curves. Many of the
surfaces that solid modelers use as primitives from which to build models are ruled surfaces.
Three of the four most common surfaces (the plane, cylinder, cone, and sphere) are ruled,
as are four of the six quadric surfaces. Ruled surfaces also arise naturally in man-made
objects (e.g., propellers, car bodies [31), since the sweeping of a line through space is a
fundamental operation in machining. Finally, ruled surfaces bear a strong relationship to
the generalized cylinder method of shape representation that is widely used by the vision
community [7,81.

In this paper, we show how to perform the crucial reduction step from ruled surfaces
to plane curves: finding a plane directrix curve of a ruled surface. Intuitively, the directrix
curve is the curve that the line sweeps along in generating the ruled surface. A comple-
mentary step, finding the direction of the line at a given point of the directrix curve, is
presented. The solutions to these two problems allow one to retrieve the generating sweep
of a ruled surface from its implicit equation. The paper also clarifies the notion of ruled
surface, by proving the equivalence of two definitions of ruled surface.

Although we are guided at aJl times by the mathematical theory, we shall need to
introduce more precision in order to create constructive algorithms for ruled surfaces. For
example, a suggestion of Theorem 2 below can be found in the mathematical literature,
but it is imprecise. In particular, Sommerville states that "in general any plane section [of
a ruled surface], not containing any generator, is a directrix curve" [9], but does not offer
any elaboration of what 'in general' means. Moreover, he does not prove the statement
(although a proof would have been of no use to us anyway, since his definition of directrix
curve is different from ours).

The paper is structured as follows. Section 2 presents key definitions, some of which
are purposely changed from the typical ones in the literature in order to satisfy the more
constructive requirements of this paper. Section 3 establishes some basic facts that are
important for the rest of the paper. The core of the paper is in Sections 4 and 5, where a
method for finding the generator through a point, for identifying a ruled surface, and for
finding a directrix curve are presented. Section 6 shows how to extend algorithms for plane
curves to ruled surfaces (through an example) and sometimes even to arbitrary surfaces.
The paper ends with some conclusions. All curves and surfaces in this paper are assumed
to be nonlinear, irreducible, and algebraic. (Recall that a surface is algebraic if it can be
defined by a polynomial f(x, y, z) = 0. It is reducible if it can be expressed as the union
of two algebraic surfaces.)

2 Definitions

In this section, we introduce definitions for the ruled surface and its key components. There
are several choices for the definition of a ruled surface. The weakest definition is that a
ruled surface is (1) a surface that is equal to the union of a set of lines. (Equivalently,
through every point of a ruled surface R, there exists a line that is completely contained
in R.) A stronger definition that is the usual definition in the mathematical literature (2,9]
and the one that we shall use is (2) a surface that can be generated by smoothly sweeping
a line through space. (More formally, a ruled surface is the image of a continuous map
S : I C % -+ B1, where S(t) is a line for all t E I. We also insist that the map is one-to-one
almost everywhere: we do not want sweeps that return to sweep over a portion of the
surface a second time.) An even stronger definition is (3) a surface that can be generated
by sweeping a line along a plane algebraic curve (motivated by the observation that all
of the quadric ruled surfaces can be generated by sweeping a line along a line or ellipse).
We shall prove that this strongest definition is actually an equivalent definition when the
surface is algebraic (Corollary 4).

A straight line that lies in a ruled surface is called a generator of the surface. Usually,
there is only one generator through a point of a ruled surface. If there are two or more
generators through a typical point of a ruled surface, then the ruled surface is doubly ruled,
otherwise it is singly ruled. The only doubly ruled algebraic surfaces are the plane, the
hyperbolic paraboloid, and the hyperboloid of one sheet [4].

A simple definition of a directrix curve in the literature is a curve on the ruled surface
that is intersected by every generator of the surface 19]. However, this definition does not
lend itself well to use in geometric modeling algorithms. For example, even the vertex of
a cone would be a directrix curve under this definition. In particular, it should be easy to
generate the surface from the directrix curve. Thus, we use a more pragmatic definition:
a directriz curve of the ruled surface R is a curve C on R such that the generators that
intersect C, choosing only one generator for every point of C, are sufficient to generate R.
A directrix curve C is (almost) strong if (almost) every point of C is intersected by exactly
one generator.

Example 2.1 An elliptical eross-section of a hyperboloid of one sheet is a directriz curve.

261

An elliptical cross-section of a circular cylinder or a cone is a strong directriz curve.

As it is presently defined, there is no assurance that the ruled surface can be generated
by smoothly sweeping a line along a directrix curve. (In particular, the lines that intersect
a directrix curve are enough to generate the surface, but it is not clear that it is possible to
find a smooth sweep through them.) We now establish this fact for almost-strong directrix
curves.

Lemma 1 Let R be a ruled surface and let S be an almost-strong directriz curve of R. R
can be generated by sweeping a line along S.

Proof: We will show that R can be generated by sweeping a line along a strong directrix
curve S. This is sufficient because, for the purposes of sweeping, an almost-strong directrix
curve is equivalent to a strong directrix curve: of two adjacent points on an almost-strong
directrix curve, only one can be intersected by two or more generators (by definition) and
only one of these two or more generators can smoothly change into the single generator of
the adjacent point.

By definition, R can be generated by sweeping a line through space. We shall show
that the line must actually sweep along S. Suppose that the sweep leaves S at x. It must
return and sweep through x again, otherwise points of S in some neighbourhood of x will
not be visited by the sweep. Since there is only one generator through x, the sweep is in
the same orientation when it leaves S at z as it is when it passes through x again (staying
on the curve this time). Thus, it is possible to sweep smoothly along S without leaving: if
the sweep ever leaves S at P, then simply follow the alternate direction from P that stays
on S rather than leaving. This is a generating sweep, since by the definition of strong
directrix curve, a sweep that passes through all of the points of S must be a generating
sweep. U

Lemma 1 shows that the term 'directrix curve' is well chosen: a directrix curve does
indeed direct how the line should be swept through space. In Section 5, we will show that
every singly ruled surface has an almost-strong directrix curve.

3 Facts about singularities of ruled surfaces

We begin with some theory about the singularities of a ruled surface, which play a key role
in the development of our algorithms (as they do in most algorithms that deal with curves
and surfaces). Geometrically, a singularity of a surface is a point at which the tangent
plane is undefined [4]. Algebraically, a singularity of the surface f(x, y, z) = 0 is a point P
such that (grad f) (P) = 0 = f(P) [6), where (grad f) () is the gradient of f, the vector of
its partial derivatives. To see the equivalence of these definitions, recall that the tangent
plane of a nonsingular point P is the plane perpendicular to the surface normal at P and
(grad f) (P) is the surface normal of a nonsingular point.

Before we can continue, we must present a very important theorem from algebraic
geometry.

Theorem 1 (Bezout's Theorem, [6])

(a) An algebraic curve of degree m and an algebraic curve of degree n have at most mn
intersections, unless one of the curves is contained in the other curve.

(b) An algebraic curve of degree m and an algebraic surface of degree n have at most mn
intersections, unless the curve is contained in the surface.

262

(c) An algebraic surface of degree m and an algebraic surface of degree n intersect in a
collection of algebraic curves, unless one of the surfaces is contained in the other
surface. The sum of the degrees of these curves of intersection is at most inn.

Lemma 2 The set of singularities of an irreducible algebraic surface is a finite set of
algebraic curves and a finite set of points.

Proof: The proof is an application of the surface-surface and curve-surface versions of
Bezout's Theorem to the intersection of four surfaces. By Theorem 1c, the solution set
of f. = 0, f = 0 is a finite set of algebraic curves, since f is irreducible and f is not a
component of f. (being of higher degree). Thus, (f2 = 0, f = 0), fu = 0 is a finite set of
points and algebraic curves (Theorem 1b). Similarly, (f. = 0, f = 0, fy = 0), f. = 0 is a
finite set of points and algebraic curves. I

We now move on to the actual algorithms for ruled surfaces.

4 Computing the generator through a given point

In sweeping a line through space, it is not enough to know the curve along which to sweep.
One must also know the direction of the line at every point of the curve. Thus, a crucial
algorithm for ruled surfaces is computing the generator through a point. We wish to
develop a formula for the generator through a point P of the ruled surface f(x, y, z) = 0.
This formula should depend upon f and P. The first step is to find a necessary and sufficient
condition for the line P+tV to be a generator through P. The most obvious condition is
f(P + tV) = 0 for all t, but the following condition proves to be more useful.

Lemma 3 Let P be a point of the ruled surface f(x, y, z) = 0 and let V E 00, V 9 0.

Then the following are equivalent:

1. The line P+t V is a generator of f.

2. V . (grad f)(P + tV) = 0 for all t E R.

Proof: Differentiate f(P + tV) = 0 with respect to t, using the chain rule. is
Lemma 3 will now be used to find the generator through P, by solving for V. In the

equation V. (grad f)(P + tV) = 0, P will be treated as a symbolic constant, since the
formula for P's generator should depend upon P. Thus, V . (grad f)(P + tV) = 0 is an
equation of degree n in the four variables V = (VI, V2 , vs) and t. The following observations
will be used to solve for v1 , v2, and vs.

(1) V. (grad f) (P) = 0 is a linear equation in the vi. It can be used to solve quickly for one
of the vi in terms of the other two. (If P is a singularity, then (grad f) (P) = 0 and
the above equation is trivial rather than linear. Thus, the formula that we develop
will not be valid for singular points of the surface.)

(2) Only V's direction is important, not its length. Therefore, one of V's coordinates (say
vi) can be set to 1. Both possibilities, viel = 1 and vie2 = 1, should be considered
independently (where E is addition mod 3).

Two variables are eliminated by (1) and (2). That is, one can always choose i $ j,
because if v1 is the only nonzero coordinate of V, it cannot be a linear combination of
vie, and vie2. Thus, (1) and (2) reduce V . (grad f)(P + tV) = 0 to an equation E in
t and (without loss of generality) vi. All that remains is to solve for vi in E. Viewed as
a polynomial in t, E has an infinite number of roots. Thus, each of the coefficients of

263

E must be zero, where the coefficients are polynomials in v1 . This creates a system of
n equations in vi. The following lemma establishes that, for singly ruled surfaces, the
system of equations must yield exactly one value for vI. By Lemma 5, the system has two
solutions for doubly ruled surfaces.

Lemma 4 If the surface f(x,y,z) is singly ruled, then V . (grad f)(P + tV) = 0 has only
one solution for V for general P.

Proof: The above method derives a system of equations in v, and the symbolic constant
P (where P represents an arbitrary nonsingular point). Each solution for vi (which may
depend upon P) generates a vector V such that P+tV is a generator through P. Suppose
that the system has a simultaneous solutions for v1 : vIJ, VJ,2,... vta. I claim that almost
all of the points of the surface will be struck by a generators. The only points that might
not be struck by a generators are singularities and points such that two of the solutions for
v, become identical. That is, because the above method, in particular step (1), assumes
that P is nonsingular, it cannot be used to make any conclusions about singularities; and if,
for example, the solutions are v,= l-pi and V1,2 = l+pl, then most points will be struck
by two generators but a point such as P = (0,3) will be struck by only one generator.
Consider the points such that two of the solutions for v, become identical. View a solution
for vt as a polynomial in P and view this polynomial as a surface. Then one can see that
the points PO such that vl,i(Po) = vij(Po), i 9 j must form a set of measure zero (as
a subset of the surface), because two distinct surfaces intersect in a set of measure zero
with respect to any surface (Bezout's Theorem Ic). Similarly, the singularities of f(x, y, z)
form a set of zero measure as a subset of f(x, y, z) (Lemma 2). Therefore, the points of
the surface that are not struck by a generators form a set of zero measure. In particular,
if a > 2, then the surface is not singly ruled. I

Corollary 1 A point of a singly ruled surface that is intersected by two or more 7enerators
is a singularity.

Proof: The set of points such that two of the solutions for v, become identical is empty,
because there is only one solution to start with. 9

Let us review the status of our journey towards the computation of a generator through
a given point P. We have reduced the generator computation for a nonsingular point to
the solution of a system of equations in a single variable v, and established that, for singly
ruled surfaces, there is only one solution for v, to be found. We shall solve the equation
of lowest degree in the system for vi, and then eliminate those solutions that are not valid
for the entire system by substituting into the other equations. Finally, each v, solution is
grown into a V = (vit 2 , vs) vector.

There are two cases to consider, depending on the degree of the equation of lowest
degree. If it is of degree less than 5, then it can be solved symbolically, so there is no
problem with the symbolic constant P and we can find a formula for the generator(s)
through any nonsingular point of the surface. However, if the equation of lowest degree
is of degree 5 or higher, then the best we can do is to plug a specific point Po into the
equation and solve it numerically, i.e., find the generator through one point at a time.

Example 4.1 f(z, y, z) = y2 _ 2 _ z -= 0 is the, equation of a hyperbolic paraboloid.
grad f(z,y,z) = (-2, 2y, -1) and V. grad f(P) = -2piv: + 2p 2v2 - v3, which can be used
to set vs = 2p2v2 - 2pv 1 . By setting v 2 = 1, V . grad f(P+tV) becomes 2t(1 - v'). This
polynomial is identically zero (when viewed as a polynomial in t), leading us to conclude
that all of its coefficients are zero. That is, 2(1 - v2) = 0 or v, = ±1. (This is a rather
trivial system of equations.) Therefore, V = (1, 1, 2P2 -p), (-1, 1,2p2 +pl). Since vI is
nonzero in these solutions, there is no need to go back and check v, = 1.

264

-~I

The method that we have described for finding the generator(s) P+tV through a point
P can also be used to discover if a surface is ruled. Given the surface f(x, y, z) = 0, one
solves V • grad f(P+tV) = 0 to find V such that P + tV is a generator. If no V can be
found or it is invalid (e.g., complex), then the surface is not ruled.

Example 4.2 f(x, y, z) = X2 + y2
- z = 0 is the equation of an elliptic paraboloid.

grad f(x,y,z) = (2x, 2y, -1) and V . grad f(P) = 2py1v + 2p2v2 - v3, which can be used
to set v3 = 2prv1 + 2p2 v 2 . By setting v2 = 1, V. grad f(P+tV) becomes -

2
P2 + (2v, + 2)t,

whose coefficients must be zero. In particular, the linear term 2v2 + 2 implies v, =
which is n."t valid. We conclude that this paraboloid is not ruled.

5 Finding a directrix curve
In the theory of ruled surfaces, directrix curves are a very important structure that will
often be used in algorithms. Moreover, the directrix curve will be the main means of
translating ruled surface problems to plane curve problems. Therefore, the development of
a method for finding a directrix curve on a ruled surface is crucial. The following example
suggests how this might be done.

Example 5.1 We would like to show that a planar cross-section of the ruled surface can
be used as a directriz curve. However, a plane parallel to a cylinder's axis will not intersect
the cylinder in a directrix curve, although all other planes will create an elliptical directrix
curve. This suggests that one should not choose a plane that contains a generator of the
cylinder. As another example, a planar cross-section of a cone that passes through the
cone's vertex will not generate a directriz curve, although all other cross-sections shall.
This suggests that points of the ruled surface that have several generators passing through
them (the singularities of a singly ruled surface) can cause problems.

We use these observations to find a directrix curve.

Theorem 2 Let R be a ruled surface. If P is a plane that

(i," s R

(b) does not .intain any generator of R

(c) does not contain any singularity of R that is intersected by an infinite number of
generators, and

(d) does not contain an entire irreducible singularity curve of R.

then R n P is a directrix curve.

Proof: '.is theorem is more easily proved if we work over projective space. R and P
should be viewed as r)int sets in projective space. The restrictions on P must also hold
over projective space, e., P must not contain any generators at infinity or singularities at
infinity either.

The first requirement for a directrix curve C is that the generators that intersect C
cover the surface. This is established for R n P by showing that almost all generators of
the ruled surface intersect P. Suppose for the sake of contradiction that an infinite number
of R's generators are parallel to P. In projective space, P contains a line at infinity and
every generator that is parallel to P will hit this line. Thus, R has an infinite number
of intersections with P's line at infinity, implying by Bezout's Theorem (Theorem 1(b))
that P's line at infinity is contained in the ruled surface. But this violates our assumption

265

that P does not contain any generator of R. We conclude that only a finite number of R's
generators are parallel to P or, equivalently, that almost all of R's generators intersect P.

For the second requirement of a directrix curve, we must show that the generators that
intersect R n P still cover the surface if we restrict to one generator through each point of
R n P. The proof for doubly ruled surfaces is straightforward and we only consider singly
ruled surfaces. By Corollary 1, it suffices to show that R n P contains only a finite number
of surface singularities, each of which is intersected by only a finite number of generators.
By Lemma 2, the singularities of R consist of a finite set of algebraic curves and a finite
set of points. Because of restriction (d), the plane P can intersect every singularity curve
in at most a finite number of points (Theorem 1(a)). Therefore, P contains only a finite
number of singularities. Restriction (c) guarantees that each of these is intersected by only
a finite number of generators. I

This offers us a way of finding a directrix curve.

Corollary 2 A randomly chosen planar cross-section of a ruled surface is, with probability
one, a directrix curve.

Proof: There are a finite number of singularity curves (Lemma 2). It can be shown that
there are only a finite number of points that are struck by an infinite number of generators.
Finally, of the planes that go through a given point of the surface, only a subset of measure
zero (with respect to the entire set) will contain the finite number of generators through
that point. We conclude that the set of planes that satisfy the restrictions of Theorem 2
are dense in the set of planes. I

Corollary 3 A ruled surface always has a plane algebraic directriz curve.

For a singly ruled surface, the directrix curve of Theorem 2 will be almost-strong, since
it will contain a finite number of singularities and singularities are the only points of a
singly ruled surface that can be intersected by more than one generator (Corollary 1). This
establishes two very interesting corollaries.

Corollary 4 An algebraic ruled surface can be generated by sweeping a line along a plane
algebraic curve. That is, for algebraic surfaces, the last definition of ruled surface in
Section 2 is actually equivalent to (not stronger than) the definition we are using.

Proof: A singly ruled surface has an almost-strong directrix curve, so apply Lemma 1.
For doubly ruled surfaces, notice that they can be generated by sweeping a line along a
line or ellipse. n

Corollary 5 There is a unique way of generating a singly ruled surface by sweeping a line
through space.

Proof: Let R be a singly ruled surface. It has an almost-strong directrix curve S. In the
proof of Lemma 1, it was shown that every sweep of R contains a sweep along all of S.
We claim that, for singly ruled surfaces, every sweep of R is exactly a sweep along S. A
sweep along S already generates R, by definition of almost-strong directrix curve. Thus,
every generator that does not intersect S will be singular (Corollary 1), since every point
of this line is already contained in a generator through S. We conclude that there are only
a finite number of generators that do not intersect S (Lemma 2). Thus, every sweep of R
is a sweep along S. However, there is a unique way of sweeping a line along S: the line must
sweep smoothly along S (with no changes of direction, because of the injective nature of a
sweep), there is no flexibility in the choice of generator through a nonsingular point, and
there is no choice in the direction to take at a singularity (because of both the surjecTive
and injective nature of a sweep). U

266

6 An application of the theory

In this section, we show how algorithms for plane curves can be extended to ruled surfaces.
We use the example of parameterization, which uses the methods that we have developed
in a straightforward manner. Parameterization is a problem that has been solved for
(rational algebraic) plane curves (11 but not for surfaces (of degree higher than three). It
is important because both the implicit and the parametric representation of a curve or
surface are useful, so solid modelers desire the capability to translate between them. In
order to parameterize a ruled surface, we proceed as follows. Given a surface f(z,y~z),
if necessary first test that it is ruled (Section 4). Assuming that it is ruled, find a plane
directrix curve C (Section 5) and a formula V for the generator through P (Section 4).
Then the parameterization of f(x,y, z) is c(s) + Vd,()t, where c(s) is a parameterization
of the plane curve C. A similar technique can be used for extending other plane curve
algorithms to ruled surfaces, using the fact that a ruled surface is well defined by one of
its directrix curves.

Example 6.1 Consider the hyperbolic paraboloid f(x, y, z) = y - z - z = 0 again. In
Ezample 4.1, we showed that th.. .-o generators through a point P of the surface are
P +t(,1,2p2 -pl) and P+t(-i, .'-, "-pj). None of the generators P+t(d±l,1,2p2 p)
lie in the x = 0 plane, and there 4-, singularities to avoid (since f. = -1 = 0 is
impossible). Therefore, a directrix cur.,- • ;n be generated by the cross-section of the surface
by the plane x = 0, yielding the paraboia {x = 0,y 2 - z = 0). A parameterization of this
directrix curve is clearly (x,y,z) = (O,t,t 2). Thus, a parameterization of the hyperbolic
paraboloid is (0,s,s2) + (1,1,2s)t = (t,s + t,s 2 + 2st).

Some algorithms for ruled surfaces can themselves be extended to algorithms for ar-
bitrary surfaces. For example, the intersection of two surfaces f(x, y, z) and g(z, y, z)
is equivalent to the intersection of f(x, y, z) and a linear combination of f(z, y, z) and
g(x, y, z). By finding a linear combination that is a ruled surface, one can take advantage
of ruled surface properties to compute the intersection. (It is known that given any two
quadric surfaces, it is always possible to find a linear combination that is ruled 15].)

7 Conclusions

In this paper, we have presented techniques for manipulating ruled surfaces. These algo-
rithms make it easier for the computer scientist to incorporate this rich and interesting
class into solid modeling systems. We have also rigourized some of the mathematical the-
ory of ruled surfaces and developed some new facts. A future direction is to consider an
extension of ruled surfaces: surfaces generated by sweeping low degree algebraic curves
(e.g., circles) through space, rather than lines. This would enrich the class of surfaces
while maintaining the simplicity of ruled surfaces. Under this extension, for example, one
could model a sphere.

8 Appendix

The following lemma is important but it is discussed here because it would have disrupted
the flow of the main exposition.

Lemma 5

1. Doubly ruled surfaces are nonsinguar.

267

2. Every point of a nonplanar doubly ruled surface is intersected by exactly two genera-
tors.

Proof: (1) is easily established by testing the algebraic criteria for a singularity on the

normal forms for the three doubly ruled surfaces (such as ' - ! - 1 = 0 for hyperbolic
paraboloid 110]). For (2), let P be a point of a nonplanar doubly ruled surface R. P is
intersected by at least two generators, by definition. P is not intersected by three coplanar
generators, since their common plane would be a component of R (by Bezout's Theo-
rem 1c), contradicting the irreducibility of R. It remains to show that P is not intersected
by three noncoplanar generators. A well-known fact about ruled surfaces is that the tan-
gent plane of any (nonsingular) point of a generator contains the generator. (Lemma 3
provides a simple proof of this fact, since (grad f)() is the surface normal.) Thus, if P is
intersected by three noncoplanar generators, it must be a singularity, since a single tangent
plane cannot contain all of the generators through P. But doubly ruled surfaces do not
have any singularities. We conclude that P is intersected by exactly two generators. I

References

[I] S. S. Abhyankar and C. Bajaj, Automatic parameterization of rational curves
and surfaces III: algebraic plane curves, Computer Aided Geometric Design,
1988, to appear.

(2] W. L. Edge, The Theory of Ruled Surfaces, Cambridge University Press,
Cambridge, 1931.

[3] V. 0. Gordon and M. A. Sementsov-Ogievskii, A Course in Descriptive
Geometry, Mir Publishers, Moscow, 1980.

14] D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination, P. Nemenyi,
translator, Chelsea, New York, 1952.

[5] J. Levin, A parametric algorithm for drawing pictures of solid objects com-
posed of quadric surfaces, CACM, 19(1976), pp. 555-563.

(6] D. Mumford, Algebraic Geometry I. Complex Projective Varieties, Springer-
Verlag, New York, 1976.

[7] R. Nevatia, Machine Perception, Prenice-Hall, Englewood Cliffs, NJ, 1982.

[8] S. A. Shafer and T. Kanade, The theory of straight homogeneous generalized
cylinders, Technical Report CMU-CS-83-105, Dept. of Computer Science,
Carnegie-Mellon University, January 1983.

(9] D. M. Y. Sommerville, Analytical Geometry of Three Dimensions, Cam-
bridge Univ. Press, Cambridge, UK, 1934.

1101 G. B. Thomas, Jr. and R. L. Finney, Calculus and Analytic Geometry,
Addison-Wesley, Reading, MA, 1981.

[11f R. J. Walker, Algebraic Curves, Springer-Verlag, New York, 1950.

268

Using MACSyma to Calculate the Extrinsic Geometry of a
Tube in a Riemannian Manifold

Harry S.D. Mills
Department of Mathematics, University of Idaho

and
Micheal H. Vernon

Division of Natural Sciences, Lewis Clark State College

Abstract. In this paper we present a MACSyma batch file that calculates the second fundamental
form of a tubal hypersurface of a Riemannian manifold. This program is currently being used to

investigate the extrinsic geometry of tubes about totally umbillic submanifolds in a complex space

form and is implemented on a Sun 3/60.

0. Introduction

Submanifold theory has had a long and fruitful history in differential geometry. Of

particular interest is the study of hypersurfaces (a generalization of the concept of

surface). Usually we are interested in the extrinsic geometry of the hypersurface - that is,

aspects of the geometry of the hypersurface that are determined by how it sits in the

ambient space: its shape, size, curvature, etc.. It turns out that all this information is

embodied in a tensor field called the second fundamental form (see [5]).

The focus in this paper is on tubal hypersurfaces: given a known submanifold

(say a curve) of a known ambient space (such as Euclidean 3-space), the tube of radius r

about this core submanifold is the set of all points at a distance r from the core. The

extrinsic geometry of the tube is completely determined by the extrinsic geometry of the

core and the intrinsic geometry of the ambient space. In Section 1, the mathematical

theory for this relationship is described: the extrinsic geometry of the core serves as

initial conditions for a system of differential equations determined by the intrinsic

geometry of the ambient space. The solution to the system generates the second

fundamental form of the tube.

Laplace transform theory is tailored to the specific case at hand in Section 2. We

develop the structures used in a MACSyma batch file that calculates the second

fundamental form of tubal hypersurfaces of any Riemannian manifold. This program is

presented in Section 3. It requires as input

1) the real dimension of the hypersurface,

2) the curvature tensor of the ambient space, and

3) geometric aspects of the "core" submanifold including its second fundamental

form.

The final output is the second fundamgntal form of the tube. Section 4 contains the

results of a sample run.

1. Calculating the Second Fundamental Form of a Tube

The initial discussion will be of a general nature: that of calculating the second

fundamental form of a tube in a semi-Riemannian manifold. (For more detail, see [1], [2],

[3], [4] and [8].)

Recall first the notions of cut point and cut locus. (A detailed and analytic discus,..I

of cut loci can be found in Vol II of (5] and in [6].) A cutpint of a point p in a Riemannl,.n

manifold M is a point c=y(t), where y is a geodesic emanating from p=-,(O) with the

property that the length of y([O,t]) is the same as dM(p,c) and for s>t, the length of the

curve y(J), J=[0,s], is greater than the distance dM(p, y(s)). For instance, if pe S2(r), its only

cut point is its antipodal point.

The cut loco of a point pe M, written Cut(p), is the set of all cut points of p. The cut

locus of a point on a sphere is a singleton, whereas for a point p on a cylinder over S' in

R3, Cut(p) is the axial line opposite p. Define c(p)=min(d(p,q) I qe Cut(p)).

Let Nm be an immersed submanifold of a Riemannian manifold Mn. Define the unit

normal sphere bundle of N by:

S±(N) = {Xe (T(N))" I I1x 1=11.

Set c(N)=inf{c(p) I pe N}. Now for each re (O,c(N)), define the ,tube of radius L ab_.t.Ni

M to be the hypersurface given by

Nr = {expq(rX) I pe S-(N)}.

270

Let cr(tXq) be parallel translation of vector fields along the geodesic (yx)q :t- exPq0tX)

For P=exPq(rX)re Nr, T (tXq) : Tq(M) -.> TP(M) is a linear isometry, ([7], p.66). By the

generalized Gauss Lemma ([6], p. 121), we have

(1) TP(N,) =,r (r,Xq)({Xq-'-)=f 'r(r,Xq)Xq)J- and

where denotes the isomorphism of parallel translation.

c(rX) Xq

For XE= S-1(N) and qle N, define Rx(t)e End[Tql(N)], for each t > 0, by

Rx(t)Yq = t(t,XqF1 {R(tc(t,Xq)Y,t(t,Xq)Xq)C(t,Xq)Xq}

where R is the curvature tensor of M. As we are primarily interested in the tangent space

of the tube Nv set

RX(t) =RX(t) I (X}±

Finally, define F(t,X)e= End({XI-'-), for each Xe S-L(N) to be the solution of the initial

value problem:

271

d2

(3) -- F(t,Xq) + Rx(t)oF(t,Xq) = 0

dttF(0,q) =P, dF~tq)]I t=o = (-Ax)oP + P

for each qe N, where P:{X}'L-T(N) and P-L:{X} 1-JT(Nr)L{X}1 are orthogonal

projections of the vector bundle {X}' = T(N) ([T(N)'1 -{X} i] onto the indicated

component distributions, and Ax is the Weingarten map of X on N in M.

Theorem 1-[2, 4,8]

The second fundamental form of Nr at p=expq(rX) is given by

(4) Hr = '(r,Xq)--F(t,Xq)) I t=r oF(r,Xq)- 1oc(r,Xq)-'.//

Hence, in order to find an explicit representation of the second fundamental form of a

tube, we need merely select a suitable basis of T(Nr) using (1) and (2), solve (3) and then

compute (4). Of course (4) says that Hre End[T(Nr)] at p=expq(rX) is nothing more than

parallel displacement of the endomorphism

(dF(t,Xq)) I t=r oF(r,Xq)-le End[{Xq}'L

along the geodesic yx emanating from q and passing through p.

In case M is a symmetric space, once a suitable basis of {Xq}' is selected (where

qe N and Xe S'(N)), parallel displacement along the geodesic yx will preserve the basis

and the respective orthogonality relations between its elements. Thus, in this case Hr

will have the same matrix representation with respect to the displaced basis as

F'(r,Xq)oF(r,Xq) "1 has with respect to the chosen basis of {Xq) - . This simplifies the

calculation of (4) considerably.

One of the authors has successfully exploited this theory to build model spaces

for the purpose of geometric classification of hypersurfaces (see [9] and [10]). These

calculations were done by hand and were thereby restricted by tedium to certain cases.

272

2. The Computational Task
The authors have collaborated to write and implement a MACSyma program on a

Sun 3/60 that automatically performs these calculations and hence enlarges the set of
ambient spaces and "cores" that can be practically studied. We now discuss (3) and (4)
from a computational point of view. As part of this process, we introduce the symbology
used in the actual code.

Provided F(tXq) is of dimension K, we solve (3) by solving the K systems of

differential equations corresponding to each of the K columns of F(tXq). The system

arising from consideration of the jth column of F(t,Xq) is the following:

f"j+ r1~jf ,j + rl,2f2,j + ...+ r1*1f1, + ...+ rlkf~ = 0

f "2,j + r2,1 f 1j+ r2,2f2,j + .. + r2J fij + .. + r2,kfk~ = 0

(5)

f' 'j+ ri,lf1 ,j + ri, 2f21 + .. + ri~lf1, + .. + ri,kfklj = 0

fk+ rk,lfj + rk,2f2I + .. + rk,ifi,!+...+ rkkfklj = 0, where rij,

f**, and f''1 denote the ijentries of Rx, F(t,Xq), and -tF(tX) epciey

Taking the Laplace transform of the ith equation in (5) gives

S Zf~)- s f11(t0) - f'11(t0) + rj.iZ(fjj) + r,2-T(f2 j) + --- + r1,1Z(f1j) + ... + ri,k-.t(fk,j) =0, SO

rjfj)+ ri,A 2~e~f) + ... + (r,1 + s2)Y(fjj) + ... + rik~.fkj) = S fi,(tO) + f'1,(t0), where

Zfj)is the Laplace transform of the i,jt entry of FIt,Xq) and f1,1(t0) and f '1,,(t) are the ij

etisof F(0, X) and dt Rrseciey
entie 'q dtFtXq) I t=O' epciey

Thus, we determine the Laplace transforms of the entries of the jth column of
Ftq by solving the matrix equation, LMTRX.LFBAR =BBAR , where

273

2rJ'J+s2 r1,2 ... r1ik-1 rt'k' i °"f)Sfl'j(t°)+f'l'I(t°)

2LM T = r2'1 r2,2+s2 r2'k-1 r2'k ,LBA = (2'J) , AR= sf2'1(t°)+f'2'j(t°)'

MvrRX= . LFMR= ,BBAR=
+k1, 2k , r(fk-1 2 Sfk-l,i(t0)+f'k-l,j(t0) /

rk,1 rk,2 rkk rkk+S 2 -fk) sfkj(tO)+f'kj(tO)

and "." denotes matrix multiplication. Hence, LFBAR = (LMTRX)- '.BBAR.

In the program to follow, the vector obtained by computing the inverse Laplace

transforms of the entries of LFBAR is denoted by FBAR. The program will compute K

different FBAR's, and affix each directly to F(tXq), henceforth FMTRX, as a column
dthereof. Having computed FMTRX, it will remain to find -tF(t,Xq) =diff(FMTRX,t), FMTRX -',

and Hq = HMTRX = diff(FMTRX,t).FMTRX -1 . In MACSyma, this final step requires no further

explanation.

3. The Software Package

The program that follows accepts as input from a separate data file the following

mathematical objects:

1) the dimension K of the tubal hypersurface;

2) the curvature tensor R of the ambient space restricted to the tangent space of

the tube;

3) the second fundamental form A of the core submanifold; and,

4) the projection matrix onto the tangent space of the core.

The code with comments is given below. Comments in MACSyma are

demarcated by '/*" and "*/" at the beginning and end, respectively. Despite extensive

internal commenting, italicized remarks have been added to the body of the code, where

the manipulations may be unclear to the reader.

The batch command accesses an executable text file containing the initial conditions, an
example of which is given in the Section 4. The main program itself is invoked by a similar
command, entered manually by the user during an interactive session in MACSyma. Note typical

UNIX path name:

batch("/usr/mickey/steve/prog rams/macsyma/demo data");

274

/*PART 1: GENERATE LMTRX FROM R. *
k1ill:s$ /hEnsure 's will behave as vadable.*/

LMTRX:R$ /*Start with R.*/

for i:1 thru K do(/forl*1

LMTRX~i,i]:SA2 + LMTRX[i,i])$ /*Add "SA 2" to diagonal element of R.*/

/*end for 1*
LNVMTRX:LMTRXAA-1$ /*Record the inverse of LMTRX.*/

/*PART II: SOLVE FOR EACH OF K COLUMNS OF FMTRX. *

LFBAR:[]$ /*Initialize vector as empty list. It empties itself each cycle.*/

for j:1 thru K do(/*for 2*/

BBAR:fl, /Initialize and empty out each cycle.*/

FBAR:0, /Initialize and empty out each cycle.*/

/'PART Ila: GENERATE JthBBAR FROM Jth COLUMNS OF FZRO AND FPRMZRO. ~
fori:0 thru Kdo(/*for 3*/

FZRO and FPRMZRO correspond to F(O,Xq) and -iF(t,Xq) I tn.,respectively.

x:FZRO[i,jJ~s+ FPRMZRO[ijJ, /*Construct Ith entry of the Jth BBAR.*/

BBAR:endcons(x,BBAR)), /*Tack it on to BBAR.*I /end for 3*/

/*PART l1c: SOLVE FOR Jth LFBAR BY MATRIX MULTIPLICATION. *

LFBAR:LNVMTRX.BBAR,

/*PART lid: FIND INVERSE LAPLACE TRANSFORMS OF Jth LFBAR. *

for M: thru K do(/*for4*/

x:first(first(LFBAR)), /*Extract Ith entry of Jth LFBAR.*/

LFBAR:rest(LFBAR), rtelete same from LFBAR.*I

The following command, ilt(x,s,t), is a built-in feature of MACSyma, which takes the Laplace
transform given by the first argument, x, treats it as afunction of the second argument, s, and returns
the inverse Laplace transform in terms of the third argument, t:

275

y:ilt(x,s,t), /*Take inverse Laplace transform of Ith entry of Jth LFBAR.*/

FBAR:endcons(y,FBAR)), /Place result in FBAR.*/ /*end for 4*/

r PART IlIe: TACK ON Jth FBAR TO FMTRX.

Having generated FBAR in the previous loop, we affix it to FMTRX, using the

addcol(FMTRX, FBAR) command, which tacks the second argument on to the first argument as its

last column. Thus a K by K matrix becomes a K by K+1 matrix. One may see that FMTRX is

indeed K by K to start with by turning to the initialization file in the next section.

FMTRX:addcol(FMTRX,FBAR), /Add to end.*/

FMTRX is now a K by K+I matrix. We delete the first column, which to this point contains

only zeros, using the submatrix command:

FMTRX:submatrix(FMTRX,1))$ /*Axe the first.*/ /*end for 2*/

/*PART Ill: COMPUTE SECOND FUNDAMENTAL FORM VIA MULTIPLICATION.

HMTRX:diff(FMTRX,t).(FMTRXAA)$

Note that computation ofFMTRX-land dldt(FMTRX) is implicit in the above statement. It

suffices, with MACSyma, to leave it at that.

FMTRX; /*Display results.*/

HMTRX; /*Display results.*/

4. A Sample Run

Following is an example of an initialization file to be invoked by the command

"batch("usr/mickey/steve/prog rams/macsyma/demo data") in the main program. We

keep the dimension small due to space restrictions. In this example, the ambient space

is two-dimensional complex hyperbolic space (of four real dimensions) so R is set equal

to the appropriate curvature tensor, restricted to a tube about a one-dimensional

geodesic hyperbolic space curve with constant curvature, so the second fundamental

form of the core (A below) is set equal to the zero matrix.

276

K:3$ /*Assignment of dimension is explicit.*/

R:matrix([-1,0,0], /*Curvature tensor of ambient space.*/

[0,-1,0],

[o,0,-4],

FZRO:matix([1,0,0],

[0,0,0], /Projection of the ambient tangent space.*/

[0,0,1], Ponto the submanifold tangent space.*/

A:zeromatrix(K,K)$ /*Second fundamental form of tube core.*/

FPRMZRO:-A.FZRO + ident(K) - FZRO /"initial condition of F.*/

FMTRX:zeromatrix(K,K)$ /*!nitialize as null matrix.*/

HMTRX:%$ /*Set equal to previous matrix.*/

The output from a run of this data set yields:

cst)0 0 1 tanh(t)j 0 0 1
FMTRX =0 sinh(t) 0 and HMTRX= 0 coth(t) 0

0 cosh(2t)J 0 0 2tanh(2t)j

This run verifies that a tube about a geodesic hyperbolic curve in a complex hyperbolic

space is a contact hypersurface.

Similar runs concerning tubes about totally geodesic submanifolds in complex

space forms of higher dimensions have verified results found in [9] and [10] as well as in

other well-known works concerning the extrinsic geometry of hypersurfaces in

Riemannian manifolds. The authors are currently using this code for runs that calculate

principle curvatures of tubes about totally umbillic submanifolds of complex space forms.

An analysis of these runs will provide a basis to formulate conjectures regarding a

geometric classification of hypersurfaces in complex hyperbolic and projective spaces in

terms of tubes about totally umbillic submanifolds. This will effectively generalize the

results of [9] and [10].

Support for this research was provided by two Idaho State Board Of Education

Higher Education Research Grants. Specific support fur this paper was provided by

Idaho SBOE grant number 88-068.

277

5. BibJUgraphy

[1] T. Cecil and P. Ryan, Focal sets and real hypersurfaces in complex projective space,
Trans. Amer. Math. Soc., Vol 269, #2, Feb. 1982

[2] B. Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine und

Angewandte Math., Band 325, 1981, 28-67

[3] A. Gray and L. Vanhecke, The v0 uesabout curyes in a Riemannian
m_ifgl, Proc. London Math. Soc., (3), 44(1982),215-243

[4] R. Howard, The Weingarten maD of a tube, Personal Communication

[5] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry,

Vol I & II, John Wiley and Sons, 1969

[6] W. Klingenberg, Riemannian Geometry, De Gruyter Studies in Mathematics 1, Walter

De Gruyter 1982

[7] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J., 13(1966)

[8] L. Vanhecke and T. Willmore, Jacobi fields and geodesic s.a, Proc. Roy. Soc.

Edin., 82A, 233-240, 1979

[9] M. Vernon, Contact hypersurfaces of a complex hyperbolic space, Tohoku
Mathematical Journal, vol. 39, no. 2, June, 1987

[10] M. Vernon, Some families of isoparametric hypersurfaces and rigidity in a complex
hyperbolic soae., Transactions of the American Mathematical Society,

December, 1988

278

COMPUTER ALGEBRA IN THE THEORY OF ORDINARY DIFERENTIAL

EQUATIONS OF HAIPEN TYPE

V.P. Gerdt, N.A. Kostov

Laboratory of Computing Techniques and Automation
Joint Institute for Nuolear Research

Head Post Office, P.O. Box 79, 101000 Moscow, USSR

Abstract. We present an algorithm for solving linear differential
equations In spectral parameter of Halphen type. The integrability
condition of the pair of equations of Halphen type gives the large
family of nonlinear differential equations of Lax-Novikov type.
This algorithm is implemented on the basis of the computer algebra
system REDUCE.

I.Introduction

We consider a linear differential equation in parameter A.
(spectral parameter)

m m-1 din-
IA- (m + = pa(x)axi-a) = XTD, (1)

j=i
where pj(x) are expressed in terms of elliptic functions. There are
two classical problems [I]:

I) For which linear differential equation (1) is there a nonzero
family of eigenfunctions T(xA,k,a), depending smoothly on the
eigenfunction parameter X, such that 0 is meromorphic function on
the algebraic curve

Cg: R(k,a)=kN+ZlkN- r (a), W.(k,a), (2)
j=1

where r (a) are meromorphic functions on the elliptic cluve

0I : (V'(a),j3(a)); (3']2 =4T3-g2j3-g.; g2 ,g3-elliptic invariants and 13
is the Weierstrass -function. We may view 0 as an N-fold covering
of the elliptic curve 0C. Our conventions and notations concerning
elliptic functions are those of Whittaker and Watson (2, Ohap.XX].
This problem goes back to Halphen [1]. The solution of this problem
was given in I] only when m=3,4. The more general Halphen's
problems of equivalence and classification of ordinary differential

equations are recently solved by Bercovich (3] using the method of
factorization of differential operators. These problems are closely
related to the problem i). As an illustration we give the following
example E1,4]. Let us consider the third order equation

(&d + dq(x)a + 3q;"(x))T = XT. (3)

and introduce the so called first and second Halphen's absolute
invariants h=3q,,1-=3q. There is the following theorem:
Theorem 1. [1] The necessary and sufficient condition of integration
of equation (3) in terms of elliptic functions is the algebraic
relation

h3 =(1-n 2)l 2 /4 +const., n-integer number, n * 0 (mod 3).

Then eq.(3) has the following canonical form (Halphen equation (5])

d 3 2 d
(3 + (In e)j3(x)8 + (1-n 2)13' (x)/2)9 = XT (4)

where 13(x) is the Weierstrass T-function.
Similar analysis is also possible when m > 3. Some particular

results are known when m=4,5. Below we shall call this family
of equations the Halphen type equations. There is another useful
approach to generating the equations of Halphen type. Let us recall
some results on the algebra of commuting differential operators
(Burchnall-Ohaundy theory) [6] and corresponding completely integ-
rable systems (the so called Lax-Novikov equations [7-91). We start
with two linear differential operators

dk- k-i(1 -1 d-
T,= +_ u(x) ii-k L2 - 1 + Z v.M E l-j. (5)

280

Then we consider the following nonlinear system of differential
equations in UiVa

L ,L2 =0, (6)

which is equivalent to a condition of integrability of the system

L)= XT, L2 T = 11)-(7)

Theorem 2. (Burchnall-Ohaundy) (6], see also [10]. The equation (6)
is equivalent to algebraic relation of i.ie following type

Q(L ,,) = 0,

where Q is a polynomial, such that
1) The eigenfunction T(xA) is the meromorphic function on the

algebraic curve Q(X,4)=O.
2) The coefficients of Q(X,p) are the first integrals of eqs.

(6) and are expressed as a differential polynomials of ul,v .
3) When k,l are relatively prime, the space I of W is one

dimensional. The system (6) is completely integrable and solutions
ui,vj are expressed in terms of Riemann e-function.

EXCOple 1.
Let us consider eqs.(6) when k=2,1=2k-1

[LLi]=0.

wherr - & 2 + u(x), Li are operators, which are computed using a
rela ound by Lax

9_ L J. (8)
at

L and Liare called the Lax pair. The general expression for the
Liis given in 111]

1 a d I -k
Li=1/2 -Hka - 1/2 _luL (9)

for instance,

L=1/4d L 2=-1/4 3 + 3u/8 d + 3u/16,

3=1/4 dx5 5u/8 15u,d 2 - 25uu,,/32 &+ 15uu'/32-15u'"/ 64

281

Li is a differential operator of degree 21-1. For explicit
expressions of Hk,Xk see [11]. Using Lame potential u = I(i-1)I(x)
and formula (9), we can obtain an useful example of Halphen type
operators, for instance,

ds 3 d)
L2 =&3 - 3(x - 3 (x)/2

d5 d3 d2 d'()
e3=s - 45/2 (x)ej - 75/2 51(3) - W- (10)

- 45/2 f (X)a + 45/2 13(x)3'I(x - 15/8 13'"' (x).

The same technique can be applied to the next two examples.

E&fmple 2.Let us consider the generalized Lame equation withi(i-1)/2
potential u=2 1 3(x-x), where x, are some constants, such that

Z(31 / -x)=, s

Equation of such a type was introduced by Dubrovin and Novikov[12].
By similar technique as in example 1 it is possible to construct
new examples of Halphen type operators.
Ezomple 3. Recently Treibich and Verdier [13] found new elliptic

potentials u(x) of the following type
M

u(x) = i(1-I)13(x)+ 2Z gk +) ((x-w)-ek), (11)

where 0g <gi-1, (for M,wk see [13]). Let us introduce some of them
(i=3, [13])

u(x)=6(x) + 2 [13(x-wk)-ek], k=1,2,3 (12)

u(x)=6j3(x) + 2[lp(x-w)-ek]+2j3 (x-l)-el1, lsk=1,2,3

The potentials (11) allows us to obtain new examples of Halphen
type operators.

II) The second problem is to construct the family of eigenfunc-
tions T(x,X). The general form of this function goes back to
Hermite (14] (in the case n--2) and to Halphen I] (in the case

282

n=3). This function was improved by Krichever [15] in the theory of
finite-gap integration method especially in the case of generalized
Lame equation (see example 2). He also proved that this function
satisfies the Baker-Akhiezer (BA) axionatics [16]. Below we
describe an algorithm of construction of function T(x,X), which we
call Hermite-Halphen (HH) algorithm. The particular implementation
of HH-algorithm on the computer algebra REDUCE is given. The
mathematical background of this algorithm in more details is
presented in [I7].

In the paper 1181 the following problem was studied:

III) For which linear ordinary differential operators
d d J

L-Z L W(xix Is there a non-zero family of eigenfunctlon 9(x,,%)J=o J

depending smoothly on the eigenfunction parameter X, which is also

an eigenfunctions of a linear differential operator A =Z A 'Mae
r=O r

AT(x,X) = e(x)T(xX),

for an eigenvalue e which Is function of x. The complete answer was
given in the case of Schrodinger operator. Most of the computations

in this paper have been carried out using computer algebra system
VAXSYA. The relation between the problems II) and III) is under
the progress.

In the papers [19,20] the Lame equation was studied from the
number theory point of view.

2.Notatioms

Let us introduce the functions

~dd
T(x,A)=exp(kx)(an(X,k,a)O(x,a)+ a. a(%,k,a)axj O(x,a)) (13a)

J=1
I(i-1)/2

T(x,X)=exp(kx)f Z bi C(x-xi,a)) (I.M. Krichever, [16]) (13b)

I1N gk - I 1

T(x,X')=exp(kx)(E gk~gke1)[aokO(-l,) ak l(x-wka3)Z

(V.Z. Enol'skii) (13c)

283

where

CD(x,a)=G(a-x)/(o(a)O(x)) exp(C(a)x), (14)

and a,C are Weierstrass o,C-functions [2].

Recall that the function (14) is a solution of Lame equation

(d n(n+l)1(x))@ = W, (15)

when n=2. It is easy to see that the following Laurent series
expansion of O(x,a) hold

O(x,a)=I/x + E 0. xj, (16)

Inserting (16) into the (15,n=2), we have the following
recurrent formula

(Jj-1)-2]0j -2 _i -2 , n =11(a)n O- 2 > 2, (17)
nk

(n+k=J-2)

where we use the well known expansion of 13-function [2]

3 (x) = 1/x2 + E 13JI. (18)

Some first Ij are

01=-1 /2$(a), 02z=$1(a)/6, %=-1(a/8 +g /40, 04=3(a)3(x)'/60,

3.Algorithm

HERMITE-HALPHEN
Input:

ordinary differential equation of Halphen type.
Output:

function (13a), ai=ai(Xk,a),
N-fold covering on the torus 0 (see (2)).

[lInserting (13a) into the ODE (1) and using the expansions (14),
(16) generate the system of linear algebraic equations

284

Gm(ai(A,k,a))=O, m=1,2,.., (19)

by equating the coefficients at the 1/x g (gEN).

[2]Solve the system (17) and write a i in terms of k,?, (a), '(a).

[3]By eliminating a i in (19) find the following system of nonlinear

algebraic equations

FI (k. X.,13(a), 31 (a))=0, F2(k, p(a), P' (a))=O (20)

where [j,' (a)]2=4j33 (a)-gaj3(a)-g3 .

[4]Solve the nonlinear eqs. (20) with respect to kA

k=k (13 (a) , 13(a)) ,,(13' (M) , T(a))

using some appropriate technique, for example, usual elimination

method [21) or Buchberger's approach, based on construction of

the Groebner basis [22J. Find the N-fold covering (2).

We have implemented the HH-algorithm on the basis of the system

REDUCE 3.2 and the program characteristics are the following:

- computer ES-1061 (IBM 370),
- high speed storage required, depends on the problem, minimum

600K,
- number of lines 210.

In the last step 4 we use the method of elimination. We test our

program with Lame equation n=2+9, and Halphen equation (n=4 ,5).

More general implementation is possible using function (13b) (see

example 2) and also function (13c) (see example 3).An open problem

is the generation of all equations of Halphen type.

4.Exwmples

Ezuwple 4. This example illustrates the basic steps in the

realization of Hermite-Halphen algorithm (HR-algorithm) described
above.

285

Let us consider the Lame equation (15,n--4), M=3.
[Ilnserting the function (3) into the Lame equation we obtain

[,/X 5] 3ka 3-a 2=0,
11/Z 41 3(A- 2)a3-6ka,+7a1=0,l
[,X3 (%~-O2)a2 -2ka 1+9a0 =0,
[1/i2 J 3 (5 +g,)a 3-20/3 V3'a,+ (1 0C3- 2 +X,)a 1 -2kao0=0,

Ih 3 Ma3+5(332 -g2).20/3 j~,(031-~oO
[2]The solution of the system (17) is

a3=1, a,=3k, a1 =3k2 -3/7X, ao=k(kO-3/7 X)
[3]Af tar simple manipulations we obtain

F I 3k41-(0+10P+4~+015 - 21g 2+30V3X-0,

F2 =(5X-1 401)k3+21 i3'k2+ (-3z+45V3X+1 26g2 -42Q3 2)X+7013'-25?i3'=0.

M4Using the method of elimination for the 10-fold covering of the
elliptic curve 0 1 wehave

kl 0 45 1 8+1 20 17+ (-63002+399/4 g2)k6+504"3o3 k+

(-1050V+1725/4 g3 +735/4 j3g2)k"+(360Vj2 3'-165j3tg 2)03 +

(-1 89/4g: -31 5134+2205/4 V3g 2-855/2$3g 3)k+

(-1 63"13g 2+1 25 3'g3+4W31')k+

-913 5 -75/4 3g-75/4g2 g3 +9/4 32 g3 +309/4 V.3

Exrcmtple 5.
Let us consider the Halphen equation (4) when n =4

(-1513 (x)d + 15/2 131 (x))Q = XQ. (21)

Assume that 0 has the following form

0=exp(kX)(aOO(x,a)+ a, ax O(z,a) +a, 2 D(x,a)) (22)

Inserting (22) In (21) we have

[I /x5] 2ka 2-a I = 0,
[1/X4] I? a2-aO = OS

E 1 /i2] (20~+5V3'-X) a,+ (602 -1 5'P/2) a, -9ka0=0,

286

(1 /12 (-5kj3+3/5 g2)a, + (-0+15/2 kP3 +%/2)a,-3k0a0 =0,

11/x 3 (45/4]13-3P3 ')a-(5kq3'+45/8 V3)a,+

(10-5/2 131+15/2 T)k-X/2)a0.

Step by step elimination of ai gives

a-k2 , 2k, a= eq. [1I/x~3= ?*=5 (0k3-3i% F3'),eq11/2*g=0

eq. C I/x] Ik 5 -25/2 0131+45/2 f3k-3V1'+15/2 $043-/2 k0=0.

Acknowledgements. We are very much Indebted to V.Z. Enol'skii for
many suggestions and discussions. We also would like to thank L.M.
Bercovich for the useful information about the Haiphen's problem
and Haiphen's classification when n7-4,5.

References

[13 Haiphen G.H.Memoire sur la reduction d~es equations differenti-
elles ltneaires aux formnes integrales.Mem.pres.l'Acad des Sci.
de France,1884,28,No.1 ~.p.

[23 Whittaker E.T.,Watioon G;N.A. course of modern analysis.Cambri-
dge ,Cambridge University rss, 1973.

(3] Bercovich L.M.Ganontcal forwns of ordinaryg differential equatt-
ons.Arcdfath. (Brno,CSSR),1988,24,No.l,p.25.

(43 Bercovich L.M.Absolute iflvariants and Korteweg de Vries equa-
tton.In:Group theoretical methods in physics, Proc. of the
third seminar (Yurrnala,1985),MYoscow, Nfuka ,1986(in Russian).

(53 Kmke .fferent ialglechmgen:Losungsmethoden und Losungen.
Chelsea Publishing Co. ,New York,1959.

(63 Burchnall J.L. .Ohauncly T.W.Ccmutattve ordinary differential
equattonts.Proc.Loondon Math.Soc.,1923,21 ,p.420.

(7] RovIkov S.P.The periodic problem for the Korteweg do Vries
equatton.Funct.Anal.& Appl. 1975,8 ,p.236(in Russian).

[8] Ma P.Periodic solut ion of the KcW equatton.Colmn.Pure & Appl.
[93 rcee .I.M.The method of algebraic geometry in the theory

of nonlinear equattons.Usp.Mat.Nauk, 977,32,p.185(in Russian).
Russian).

[10] Ohudnovsky D.V.The generalized Rteman-Hibert problem and the
spectral tnterpretat ion. In:Nonlinear Evolutionl Equations and
Dynamical Systems.Lect.Notes in Phys.,120,Springjr,New York,
1MO.

[111 ?VcKean H.P. ,van Moerbeke P.The spectrum of Hill's equation.
Invent.Math. ,1975,30,p.217.

[123 Airault H. ,McKean H.P. ,Moser J.Rational and elliptic solutions
of the AdV equation and a related many-body prob-lem. Cojnn.Pure
& Appl.gath.,1977,30,95.

(13] Verdier J .L.New elliptic solitons.Preprint,1987,Paris.

287

(14] Hermite COeuvres.Vol.3,Paris,Gauthier-Villars, 1912.
(15] Krichever I.M.Rlltpttc solutions of Kacomtsev-Petvtashvitt

eqatinaditgal part tcle systems.Funct.Anal.& Appi.,
198,14p.4(inRussian).

[16] Bubrovini B.A.,Matveev V.B.,Novikov S.F .Non-Itnear equatitons
equattons of KdV type, tntte-zone linear operators and
ael tan varieties. Rs~fath.Surveys,197631 Np.59.

(17] Belokolos E.D.,Fnols'kii V.Z.,Bobenko A.I.,N atveev V.B.
Algeb.ro-geometrtcal pritnciples of super positi on of finite-gap
solutitons of tntegr'able nonlinear equattons.Usp.Mat.Nauk,
1986,41,3(.1 Russian);
Belokolos E.D. ,Enol 'skil V..Redwot ton of theta-funet tons
and Hwn~bert finite-gap potentials of Lome, !14etitcf-Verdter,
etc .Preprint IMP-88-051988,Kiev, 1988.

[18]])uistermaat J.J.,Grunbaum F.A.Dtfferenttal equations tn
spectral paramzeter.Oomx.Math.Phys.,1986,103,p.177.

[19] Chuclnovsky D.V.,Chudnovsky G.V.Reinark on the nature of the
spectrumn of Lame equatton.Lett.Nuovo Oim.,198O,29,p.545.

[20] Ohudnovsky D.V.,Ohudnovsky G.V.Applicattons of Fade appoxi-
ma-t ton to the Grothendieck conjecture on ltnear differential
equattons.Lect.Notes in Math. ,vol.1 135,Number theory,
Springer, 1986.

(21] Iloses J.Solut ton of a system of polinomial equatitons by
elimtnation.Coiu.AOM,1 966,9,p.634.

(22] Buchberger B.Groebn6.r bastls: a method in the symbolic mathe-
mat los. In:Progress, directions and oen problems in Inultidi-
dimensional system theory (ed. Bose N.K.) ,Dordrecht,Reidel,
1985, p.184.

288

SYMBOLIC DERIVATION OF EQUATIONS FOR MIXED
FORMULATION IN FINITE ELEMENT ANALYSIS

H. Q. Tant
Department of Mathematical Sciences

The University of Akron
Akron, Ohio 44325

ABSTRACT One important application area of symbolic manipulation systems is
to use them as preprocessors to generate numerical code for target machines, thus
facilitating the tedious pre-processing involved in numerical computing, particularly in
Finite Element Method (FEM). However, pre-processing the given formulation often
generates unacceptable results due to the number of derivation steps involved as well
as the exponential growth of expressions produced. Presented in this paper are some of
the procedures and techniques we have developed for efficient derivation of element
equations in FEM. Examples are given for applications of those procedures and tech-
niques in the derivation of element equations for mixed formulations.

1. INTRODUCTION

The finite element method has many applications in aerospace, civil, mechanical
and other engineering disciplines. Large software packages, e. g. NASTRAN [16] and
NFAP [2], exist for the analysis of a wide-range of engineering problems. Although
these packages are written in a modular form to accommodate program changes, exten-
sive derivation of finite equation and manual coding are still necessary for incorpora-
tion of new analysis features. In this regard, utilization of symbolic manipulations for
derivation of finite element equations, including element matrices, constitutive relations
and other related numerical equations as well as automatic code generation are most
attractive.

The potential benefit of such an approach are clearly indicated [1,4,5,6]. How-
ever, unintelligent application of symbolic manipulations will have limited values. One
major obstacle is the exponential growth of derived expressions, which require
significant storage space and computer time. Our research on the integration of sym-
bolic and numerical computations has led to the construction of software automation
tools, named FINGER (FINite element code GEneratoR), LAXTOR (materiaL mAtriX
generaTOR) and SDICE (Symbolic DerIvation of Constitutive Equations) that automate
the derivation of formulas in finite element analysis, constitutive model research and
generation of code for numerical calculations. Current capacities of these softwares

* Work reported herein his been rcpported in part by the U. S. National Aeronautics and Space Administration Lewis
Research Center under Grant No. NAG 3-872 and by the Naticnu Science Foundation under Grant No. EST 87-14628.

include:
(1) derivation of element equations or matrices for the development of finite element

method (FINGER)[7,9,10,14j,

(2) derivation of mathematical formulas for new constitutive material models
(SDICE)[8,12],

(3) derivation of material matrix pertaining to finite element calculations (LAX-
TOR)[3,1 f], and

(4) based on the symbolic computations, automatic generation of FORTRAN code in a
form specified by the user for the equations or matrices based on the symbolic
computations.
Practical problems in finite element analysis and constitutive model research

invo!ve large expressions. Without design and implementation of problem-oriented pro-
cedures and techniques, the formula derivation can become time consuming and the
generated equations and code will be lengthy and inefficient. Therefore, the major
problems have to be addressed are:

(1) the derivation of symbolic formulas must be made efficient and resourceful to
handle the large expressions associated with practical problems, and

(2) techniques must be employed to reduce the inefficiencies that are usually associ-
ated with automatically generated code.

In the next few sections, we will discuss, through the application of FINGER in
the derivation of plane stress and plane strain element equations of mixed formulation
as an example, the features of our approach to those problems.

2. EQUATION DERIVATIONS

Shell elements have many applications in structural analysis. Of all the shell ele-
ments described in the literature thus far, the degenerated shell elements based on the
isoparametric displacement formulation and the Mindlin/Reissener plate theory, which
accounts for transverse shear deformations, appear to be most popular for both linear
and nonlinear shell analysis. However, the original form of degenerated shell elements
has been found to exhibit overly stiff behavior in bending for thin shells, due mainly
to the severe constraints introduced by the conditions of vanishing membrane and/or
shear strain components. This has been often referred to as membrane/shear locking
effect which placed a severe limitation on the application range of such elements. A
promising approach to overcome the locking effect is the hybrid or hybrid/mixed
method, in which the interpolation functions for displacements and stresses are
independently but consistently assumed, in order to control parasitic shear or mem-
brane terms. The success of hybrid or hybrid/mixed formulation in a large variety of
constrained-media applications, such as thin plate and shell problems and incompressi-
ble materials, has been demonstrated in various publications. Indeed, in view of its
great potential, more extensive use of this approach is anticipated in the near future.

In mixed formulation for shell element, for example, the element stiffness K is
given as:

290

-~ I

K = G (H -'G) (1)

and the element stresses are obtained from

c;=P (H-tG)q

in which

H = f pTs P dv (2)

G = PTB dv (3)

where S is elastic compliance matrix, which may have different forms for plane stress
and plane strain, for example, in two-dimension case, S is given as1 0]

E 0O 02(1+g.

When dealing with plane strain, we use the same S except the definitions of Young's
modulus E and Poisson's ratio g. The B is strain-displacement matrix and q is nodal
displacement vector.

The approach we adopted is to derive the [H) and [G] matrices in symbolic
forms, and then to compute [K] matrix numerically.

The expressions of [B] and [P] matrices have direct effect on the forming of
G] and [H] matrices. In order to derive these two matrices, we have developed some
procedures tailored just for this applications, i.e.

(1) defining of functions to represent modularized computations,
(2) labeling common expressions to avoid expression growth,
(3) substituting labels during intermediate steps by pattern match procedures to

represent the lengthy expressions,
(4) simplifications through several derivation steps by specially designed routines, and
(5) utilization of symmetric relations in the given problem.

When deriving [B] matrix, the strain-displacement relation is abbreviated as

(E)= [(U)

where (E) is strain vector, (L] is strain-displacement differential operator, (U) is
nodal displacement vector. For examaple in two-dimension case, we have,

291

dx d

[L 1= 0 -
d dy
- d

d x

where
nUx v = EN'iUX,

' i=l

n

i=1

in which Nj' is the coordinate shape functions for i = I n and n is the number of
element nodes.

Let r and s be the natural coordinates and

M",

where the subscripts indicate partial differentiation. Then we have

J = NP'[X,Y I

where J is Jacobian matrix, X = [x ,..., xnj and Y = [Yi,.... yj. To capture sym-
metry and generate more efficient code later, the function

jrow(var) := [Ns[. var, -N r var]

is used in FINGER. This allows J-1 to be expressed as

J-1 jrow (Y)
=detf [_ Jrow (X)I

where detj = det(J).

Let NPT' = transpose (NP') and let NPTj' be the ith column of NPT', now the [B
] matrix can be represented as

jrow(Y)-NPTi' - 0ow(

[-jrow (X)'NPTi' jrow(Y).NPT J

292

for i 1, 2, ... n.
In deriving shape functions for stresses [P] by FINGER in two-dimension four-

node case, we first define a contravariant stress tensor in the (r , s) domain,

.,rS = l C
12]

T'I LTl 22]

and in the physical (x , y) domain,

Cy21022
2d = [aoa]

I, account for the effect of distorted element geometry, we perform

c9j [ax I[ax I],mn
n T o Cmn"Jo

where T- is obtained by evaluating transpose Jacobian matrix at r = 0 and s = 0 and

we introduce labels to represent its entries:

-O IrIt a12 (4
Jo = La2 2a2 J (4)

Now, we have + 1 +JllJ12)T +Jl2J1C (5)

a22o 2" 2 T o"0 1 '"'"02

a22 = 17 1,tl' + (.TOJ +0 1jl) 12 + - 2 2

a12 = Y~lYToC" I + (7-J1 + 0 1 -2)C12 + J7b0 2
2 2

By substituting the labels definded in (4) for Jacobian matrix into (5), we have

a11 =a 2 It11 + 2a2 al't 12 + a 21tC22 (6)

a22 = a 1 +2a 12a22t
12 + 2a2 2

1 2 = alal 2T
11 + (a 12a 21 + a 11a 22)'T12 + a 2 1a 22T22

293

If we assume the stress functions

'ni 1 + P2S

then by substituting them back into (6), grouping terms with respect to r and S and
introducing labels again to represent these terms which are only constants in integra-
tion (see next section), we finally, have,

all a2Pih + (a11S)3 2 + (a?,r)034 (7)

_1
22

=+ (12s3 2 + (ar&

a' = J_ + (a 11al2S) 2 + (a2la22r)34

Since

by dropping bars in (7) we eventually get the expressions for P as

[1 all2s 0 a21
2r 0]

P 0 a1 2
2s 1 a2

2 r 0 (8)
0o a"+ al 2s 0 a2 1a22r 1]

and

3. COMPUTATIONAL PROCEDURES AND SYMBOLIC INTEGRATION

In deriving formulas, special attention is paid to the identification of common
sub-structures and/or expressions as the computation proceeds, not afterward. Without
these steps, the final result of the numerical programs cannot be optimized to an
acceptable level. For this reason, it requires the design and implementation of
problem-oriented procedures that are tailored just for the task of deriving equations.

The [H] matrix (2) is symmetric. Therefore, only those unique integrands are
computed. Let us examine the procedure for [H] derivation. From (8), if we define a
matrix entry-wise multiplication it is obvious that the [P n matrix can be

294

represented as
P = p'*p

where

Ia 11
2 0 a 21

2 01
P* 0 a122 1 a222 0,

0 allal2 0 a 21a22 I

P = Is 1 r

And the transpose of [P] can be represented accordingly.
By this definition, [H] matrix now becomes

H = Jj'fP T P T. S P *P' detj drds,

and by rearranging it, we have

H = jlP " S . p * p T. p detj drds,

where "*" is the same entry-wise matrix multiplication defined before.

Now, the [H] matrix is the entry-wise multiplication of

H * H',

where

H' PT P' det drds

H* = p*T . S . P*

So, instead of H, we only need to integrate H' and can keep the expression as
well as the code size small.

For [G] matrix, the integrands involve the strain-nodal displacement matrix and
it is defined in symbolic form by FINGER (see previous section). In order to catch the
symmetric relation, we first use the above defined P *T. For example, (3) can been
expressed as,

G = p*T . G

where

* = (I or r or s)B drds

and

B* =B detj .

295

Now, only those terms matching the pattern

(1 or r or s)(jrow(var).NPT)

need to be integrated instead of the whole matrix.
These procedures certainly simplity the equations for code generation and more

efficient code can be produced.
Previous work in employing symbolic systems such as MACSYMA [15] for finite

element computation was based on user-level programs which do not contain any intel-
ligence in the manner that symbolic derivations are being carried out. As a result, the
ability of handling realistic cases in practice is limited.

Let us take the the computation of of H' as an example. For element in three-
demension eight-node case the H' is an 18 x 18 matrix and each entry of the matrix
is a polynimial of 512 terms (i = n ,
where i = number of terms in the polynomial, n = number of nodes,
d = element dimension). If we were going to integrate this matrix, the expression

size is so big that it cannot be accepted.
During the top-level design of the system special attention is paid to identify the

symmetry in the given problem. The integrands for our application only contain r's,
s's, t's, x's, y's and z's (in three-dimension case), or

H'= f f (r , s , t) dr ds dt
-1

If we rearrange the above form into

f (r,s,r)drdsdt=fu(r)dr Jv(s)ds fw(t) dt,

and since it is symmetric, we can integrate one function g with dummy variable, say
u, instead of the entire expression. And the final result will be produced by pattern
match procedures. So, the approach to compute H' is to compute, as the first step,

f g (u) du
-1

Furthermore, the detj in (4) is formed by the partial differentiation of shape func-
tions with respect to the local coordinates r , s , t , and the polyn'mial only contains
combinations of the terms in the forms of

(r+l) , (r-1) , (s+l) , (s-1) , (t+l) , (t-1) .

Therefore, the expression for the function g (u) can only be

f [(+or -) (u + 1) (+or -)(u -1)I ujdu (9)
-1

(296

With this relation found, we can proceed to integrate the expression and compute
H' with pattern match procedures.

However, computation by use of the integration package of MACSYMA gives
unsatisfactory performance (very slow). And by further examination of the expression
of (9), we can find that the result of integration can only be one of the forms in

2 lfori=0, j=0,2,4,.... (10)
j+1

0, fori =0, j=0, 1, 3, 5 (11)

1, (+ or -T. 2 [(+ior -) - (+- -], for i = 1, j =0,2,4 ... (12)

1 1
2 [(+ or--(+or -) --] , for i =1, j =l, 3, 5,.... (13)

Therefore, we do not need to integrate the polynomial at all, and a pattern match
procedure can scan the polynomial and replace the terms in the polynomial with the
above numerical values.

The term detj is formed by the function jrow (var) (for two-dimension case)
or jrow (var 1 , var2) (in three-dimension case). Since the function jrow is defined
as dot product of the partial differentiation of shape functions with respect to the local
coordinates r , s , t and the global coordinates x , y , z , then jrow (X , Y) is
related to jrow (Y,Z), jrow (Z ,X), jrow (Y ,X), jrow(Z ,Y) and
jrow (X , Z) by symmetry, even though these six expressions cannot be regarded as
identical. However, if we use jrow (a , b) with dummy variables a, and b, then all
six functions are identical in the sense of computation results. In this way, we can cut
the computation by five sixth.

We think that discovering symmetric relations plays a vital rule in the code
optimization process and thus helps generate more efficient code.

4. CONCLUSION

We have discussed the use of a symbolic computation system to derive equations
in finite element analysis. Even though, only two-dimension case is given here as an
example, the equation derivation procedures can be applied to three-dimension case
without modificatiori. It is hoped that the approach discussed here may find other
applications.

297

5. REFERENCES

[1] Cecchi, M. M. and Lami, C. "Automatic generation of stiffness matrices for
finite element analysis", Int. J. Num. Meth. Engng 11, 1977, pp.3 9 6-4 0 0 .

(2] Chang, T. Y. "NFAP - A Nonlinear Finite Element Program (Version 85.1)",
Department of Civil Engineering, University of Akron, Akron Ohio, 1985.

[3] Chang, T. Y., Saleeb, A. F., Wang, P. S. and Tan, H. Q. "On the Symbolic
Manipulation and Code Generation for Elasto-Plastic Material Matrices",
Engineering with Computers-- An International Journal for Computer-Aided
Mechanical and Structural Engineering, Springer-Verlag, New York, 1986.

[4] Korncoff, A. R. and Fenves, S. J. "Symbolic generation of finite element stiffness
matrices", Comput. Structures, 10, pp. 119-124, 1979.

[5] Noor, A. K. and Andersen, C. M. "Computerized Symbolic Manipulation in Non-
linear Finite Element Analysis", Comput. Structures 1 pp. 9-40 1981.

[6] Noor, A. K. and Andersen, C. M. "Computerized symbolic Manipulation in struc-
tural mechanics-progress and potential", Comput. Structures 10, pp. 95-118, 1977.

[7] Tan H. Q. "Automatic Equation Derivation and Code Generation in Engineering
Analysis", Proceedings of IEEE International Computer Science Conference '88
(Artificial Intelligence: Theory and Practice), Hong Kong, 1988.

[8] Tan, H. Q. "Automatic Derivation of Constitutive Equations", Proceedings of
IMACS International Conference on Expert Systems for Numerical Computing,
West Lafayette, Indiana, 1988.

[9] Tan, H. Q., Chang, T. Y. and Wang, P. S., "Symbolic Derivation of Finite Ele-
ment Equations and Automatic Code Generation", ROBEXS-87 Proceedings,
Pittsburgh, U. S. A., 1987.

[10] Tan, H. Q. "Integration of Symbolic and Numerical Computations in Finite Ele-
ment Analysis", Proceedings of 12th IMACS World Congress on Scientific Com-
putation, Paris, France, 1988.

[11] Tan, H. Q. "Symbolic Derivation of Material Property Matrices in Finite Element
Analysis", Proceedings of ASME Winter Annual Meeting, Chicago, 1988.

[12] Tan, H. Q., Dong, X., Arnold, S. M. "Symbolic Derivation of Constitutive Equa-
tions", Proceedings of ASME Winter Annual Meeting, Chicago, 1988.

[13] Wang, P. S., Tan, H. Q., Saleeb, A. F. and Chang, T. Y. "Code Generation for
Hybrid Mixed Mode formulation in Finite Element Analysis", Proceedings, SYM-
SAC'86, Toronto, Canada, 1986.

[14] Wang, P. S. "FINGER: A Symbolic System for Automatic Generation of Numeri-
cal Programs in Finite Element Analysis", J. Symbolic Computation, (1986) 2,
Academic Press Inc. (London) Ltd. 1986.

[15] "MACSYMA Reference Manual", version 10, The MATHLAB Group, Laboratory
for Computer Science, MIT, 1984

[16] "MSC-NASTRAN Application Manual - A General Purpose Finite ELement Pro-
gram", MacNeal-Schwendler Corporation, Los Angeles, California.

298

I,

Semantics in Algebraic Computation

D. L. Rector
Department of Mathematics

University of California at Irvine

drector@orion.cf.uci.edu

I am interested in symbolic computation tegers, and leave polynomials in X
for theoretical research in algebraic topol- and Y in factored form."
ogy. Most algebraic computations in topol-
ogy are hand calculations; that is, they can A computer algebra system with some
be accomplished by the researcher in times semantic capability is Scratchpad II de-
ranging from hours to weeks, and they are veloped by Richard Jenks, et. a[. at IBM
aimed at discovering general patterns rather Watson Research Laboratory [5]. Scratch-
than producing specific formulas understood pad II incorporates parameterized data
in advance. Furthermore, the range of alge- type constructors in the style of CLU which
braic constucts used in such calculations is greatly enhance reusability of algorithmic
very wide. Consequently, the most impor- code. For example, a polynomial ring con-
tant design considerations for symbolic ma- structor Pol[R] will, given a data type R
nipulation tools in topology are provided with operations satisfying the ax-

ioms of a ring, create executable code for the
a ease of constuction of new symbolic data type of polynomials with coefficients in

structures, and R without any recoding by a user. This is
* deftness in control of algebraic simplifi- done without significant sacrifice in perfor-ftnion mance. Jenks introduced the notion of the

cation. category of a data type to provide a database

The researcher must have fine control of management facility for keeping track of the
whether a subexpression in a formula is re- properties satisfied by data type construc-
duced to a "simpler" form or left in some tors. In addition, Scratchpad II contains
factored condition, for simplification usually an automatic type inference facility in its in-
results in loss of information that may be teractive parser to relieve the user of much
very expensive to recover-indeed, the mere of the chore of specifying the data types of
multiplication of two integers is, in general, input expressions. This facility is primarily
so expensive to undo, that the process is the oriented toward commutative ring theory.
basis of the most common public key cryp- A second system of interest is Views de-
tosystem. veloped by Abdali, Cherry, and Soiffer at

One way to provide a user with fine con- Tektronix Labs [1]. That system, which also
trol of an algebraic rewrite system is to 0,- incorporates the notion of a category, ex-
tach control information governing choice o. tended the object oriented programming fa-
rewrite rules and heuristics to the semantic cilities of Snalltalk to allow objects to be
properties of subexpressions. For example viewed in multiple ways as mathematical ob-
one would like to be able to say to a simpli- jects. Smalltalk's object system allows a
fier user great flexability in reuse of code by al-

lowing objects to access code from different
"reduce trigonometric functions to languages.
sines and cosines, multiply out in- My aim is to synthesize and abstract the

semantic capabilities of Scratchpad II and teaching me theoretical software engineering
Views to provide a simple and flexible se- and for many useful suggestions.
mantic analysis tool that can be used by
a mathematician to encode the semantic 1 Algebraic Specification.
knowledge of his own computational world.
I intend it to provide Algebraic Specification, borrowed directly

* a semantic control language for an alge- from mathematics, is a software engineer-
braic simplification system, ing tool based on the idea of definition by

universal diagrams. For example, the data
s a type inference facility, and type AdditiveIntegers may be specified most

* a structure to catalog and access corn- simply as the free abelian group on one gen-epasuctreto alog a- erator; that is, it is a set lt together with
putational algorithms, operations

In particular, this system will, unlike
Scratchpad II, separate the semantic no- + Int x Int - Int
tion of an algebraic domain from any specific - Int -*

data representation or any data type con- 0 :-4 Int
struction mechanism in an underlying corn- 1 :- mt
puter language.

The ideas presented here are somewhat such that
preliminary. They are based on a mathe-
matician's naive faith that a powerful and (X + y) + z = X + (y + z)
easy to use formalism grows from an elegant X + Y= y + z
theoretical understanding-in this case, al- X + -X = 0
9ebraic specification. I will set forth the cur- -X + X 0
rent state of the art in algebraic specification
to show how it provides an adaquate theoret- which is initial' in the category of all al-
ical and computational framework to charac- gebraic structures with the same operations
terize the mathematical notions of category and equations. While theological arguments
and functor. I will then provide a higher rage amoung computer scientists about the
level structure, an algebraic theory to orga- relative value of algebraic specification, it is
nize categories and functors into a domain clearly an appropriate tool in formalizing the
for automatic type inferencing. Finally, I mathematical subject it was borrowed from.
will comment briefly on how the notion of a
model morphism can permit the smooth in- 1.1 Order sorted algebras.
tegration of declarative and algorithmic def-

initions of algebraic domains: I will use in what follows a formulation of
I apologize in advance to experts in alge- initial semantics due to Goguen [4]. A good

braic specification for occasional use of non- general reference is [3]; [2] provides a good
standard terminology and unintentional ap- introduction to category theory.
propriation of ideas. I have tended to use Let S = (S,_5) be a partially ordered set
mathematical terminology, since mathemat- (poset) with order relation _<. The elements
ics is the intended area of application, and of S will be called sorts and will take on
have independently reinvented some notions the semantic role of data types, where the <
known previously to the algebraic specifica- relation corresponds to type inclusion. An
tion community. I believe that my notion of S-sorted set A is a family of sets {A.), in-
algebraic theory, in the sense of a domain for dexed by the elements of S, such that s < t
automatic type inference, is new. 'An object e is initial in a category C if whenever

I would like to thank Y. V. Srinivas and x is an object of C, there is a unique map e -- z in
Ira Baxter, students of Peter Freeman, for C.

300

implies A, g At. An S-sorted function 1.2 The algebra of terms and
f : A --+ B of S-sorted sets is a family of equations.
functions f. : A, - B8.

Let S" denote the set of finite length Let E = (S, E) be a (coherent) order-sorted
strings s, ... sn, n < 0. The order relation < signature. The algebra of terms in E is the

may be extended to S" by s. * 8 < t1 ... tn order-sorted algebra 71; defined recursively

if m=nandsl 5t, .,s, < t,. An order by

sorted signature with sort set S and opera-
tions B is a pair (S, 2) where S is a poset and 1. ifa :-* 5 then a E 2.

E is afamily {h±,,Iw E S*,.s E S} of sets of 2. ifri E T,, ... , r, e 7wn and a E
operation symbols such that a EE,. n E,, then
and v <5 w imply s < t (monotonicity). An a(ri,.... ,',) E T.
operation a E , is completely specified by
a, w, and s. We shall call that 3-tuple the 3. if r E T,, and s < t, then r- E Tt.
signature of the operator and denote it by with operations
a : w -a s or w - 4 s; w is called the arity,
s the sort, and the pair (w,s) the rank of aw. 2 2T, X ... X T - T1
a. If w is the empty string A, we call the
operation a : X - s a constant and denote given by
it by a : - s or a : s. We allow a function
symbol a to be overloaded in the the sense a,(ri,... ,r) = a(ri,... 74).
that a may appear with more than one E,;
however, a constant may not be overloaded is thre Ee order-sorted algebra with sig-
because of the monotonicity condition, nature rm A consequence of regularity is for

An order sorted algebra with signature each term r, there is a least sort s E S such
(S, E) is an S sorted set A together with that T E T, [4].

functions The following discussion of equations dif-
fers somewhat from [4]. Let X by a set of

aw,, : Awl x ... x A, -4 A,. typed variables over S distinct from E;-that
is, X is a set of pairs {x1 : w 1 ,. .. ,xn : wn}

for each pair (w,s) E S* x S and symbol of symbols xi and associated sorts wi. The
a E E, . Operations must be compatible algebra of forms in 1 is the algebra of terms
in the sense that a,,,.(x) = a,,t(x) whenever T[X] = T(ux). If A'is as-algebra, a substi-
a E n,1 f ,l,, and v < w. tution in A is an S-sorted map 0 : T[X] -*

For technical reason's (see [4]) we want to A. A substitution is uniquely determined by
require of our signatures that they be coher- giving the values O(xi) E Aj.
ent in the sense that An equation over E is a set X of typed

variables together with a pair of terms r, 0 E
1. S is coNoetherian-i.e., there is no in- T[X] that have the same least sort. We

finite descending chain sl > 82 > ... in denote an equation by
S.

(VX : w,... ,z, : w,)r = O,
2. S is locally filtered-i.e., if s and t are

in the same connected component of S or (VX)T = 0 when the types are understood
(there exists a chain s = si 5 ti >s S2:5 from context. As an added refinement, we

< t, = t), then there exists u E S could also introduce conditional equations
such that s,t < u. [4]. I will omit them here for simplicity.

If r is a set of equations, a E-sorted
3. E is regular--i.e., whenever a E 'Ew,t algebra A satisfies r if for each equation

and u < w, there is a least rank (v,s) (VX)r = 0 in P and substitution 0 :
such that u < v and a E , Tij[X) .. A, one has q(r) = €(0). Given

301

a set of equations r, we may construct that x x (y + z) = (X x y) +

algebra of terms satisfying r, T,r, which is (x x z)
the quotient of T by the equivalence rela- (X + y) x z = (X x z) +
tion generated by r and the operations on
T. Then [4], TE is the (unique) initial ob- (Y × z)
ject in the category of all E-sorted algebras (Va : NZRat)x x x- ' = 1

that satisfy the equations r. end Rationalumbers

1.3 Example: the rational The subsort NZInt is required in this ex-
numbers. ample to insure regularity of the negation

operation. Notice that the various subsorts
object RationalNumbers is of Int and Rat are used to represent the val-

sues of certain predicates and represent the
sorts Int, Rat, Poslnt, NZInt, domains of partially defined functions. Sub-

.NZRat. sorts can also be made to represent error

subsorts contitions [4]. Goguen has developed a logi-
PosInt < NZInt < Int < Rat, cal programming language, OBJ3, which di-
NZInt < NZRat < Rat. rectly implements term algebras from order-

operations sorted signatures with equations [7].

+ : Int x Int -* Int 2 Categories and Specifica-
+ PosInt x PosInt -* PosInt tions.

+ Rat x Rat -* Rat

- : Int Int The above formulation of semantics provides

an ideal tool for representing mathematical
semantic information in a computer. We will

-: Rat -4 Rat encode the mathematical concept of a cate-

- NZRat -> NZRat gory as an order-sorted signature plus equa-

x : Int x Int -- Int tions.

x : NZInt x NZInt - NZInt Definition 1 A specification is a pair C =

x PosInt x PosInt - PosInt (Ec,Pc) where Ec is an order-sorted signa-

x : Rat x Rat -- Rat ture and rc is a set of equations.

x NZRat x NZRat -4 NZRat Definition 2 A model of a specification C

()- NZRat - NZRat is an Ec-sorted algebra A which satisfies the

0 :-+ Int equations rc. The model category of C is
the category Mc of all models A of C and

1 :* Poslnt Ec-sorted homomorphisms between them.

equations A specification always has at least one

(x + y) + Z = X + (y + z) model, the term algebra TEj,r, which is ini-
tial in Mc.a;+y=y+a;

X + -X =0 2.1 Equational deduction.
-a;+ a;=0

(a;x x z = a; x (y x z) A sticky point in the definition of specifica-
tion is how to characterize when two spec-

X X y = Y X X ifications are the same or related. The fol-

1 X X = X lowing rules of inference apply to equations

X x 1 = X over an order-sorted signature E [4].

302

1. Reflexivity. 2.2 Views.

Definition 4 Let C and V be specifications,
r - (vx)r =r a view of C as V, written V : C =. V, is

a pair (f,g) where f is an order preserving

2. Symmetry. function SD -* Se of sorts and g is a family
of functions g.,,: (E-v),. -- Ec such that

r i- (VX),"= o 1. if a E('v),,, then gu,,(a) E (E2c)w,t,
r - (vx)o = T where f(v) < w and t <f(s).

3. Transitivity. 2. if a E (EV)v,, n (EDv),t where v < w,
then gu,,(o) = g.,t(o).

ri- r= O, ri-0=ori -r=e, 3. if for each set of typed variables X =

{xi : si,...,-1 : sn) and form r E
7jE[XJ we let v*(r) E 2'z,[v(X)] be de-

4. Restriction. fined inductively by

r i- (vx1 ti,. .. ,x tn)r = 0 (a) v*(x: si) = (xe: f(si)), and
r F- (v xi s,.. , n :s)T = 0 () V((I ')

for s, :5 ti,... ,, tn. g(,)(r,'),...-, v'(,)).

5. Congruence. If a,f: TE[X] -* Tr[Y] then
are substitutions, and 7 E TE.[X], then rc F- v*(rV).

for each x E X, r F- (y)a(x) = #(x) If we wish to check algorithmically that a
pair (f, g) is a view, we must replace the last

1' F- (VY)a(r) = /3(T) condition by rcFv*(rv).
A view v : C == V induces a functor v.

6. Substitutivity. If a : X -4 T[Y] is a Me =* MDv in an obvious way. A view
substitution, then v = (f, g) is faithful or an embedding if f is

cofinal-that is, for all s E SD, there exists
r F- (VX)r = o t E Sc such that f(s) < t. If v is faithful,

r F- (VY)a(r) = a(O) then the induced functor ,v. is faithful.

Unfortunately, deduction by these rules 2.3 Parameterized
is undecidable since the word problem for specifications.
groups is an example of equational deduc-
tion. We will therefore take the first four Definition 5 Let C and V be specifications.
rules to define equivalence of specifications A parameterization of V by C is a view
when computability is an issue. v = (f,g), v : D == C, such that f and

g are inclusions. Denote this structure by
Definition 3 If r and 91 are two sets of V,(X: C), where X is a variable symbol, or
equations over an order-sorted signature E V(X : C) when v is clear from context. The
then %F is weakly derivable from r if each functor v. is called the forgetful functor of
equation of %P follows from r by renaming of the parameterization. [3]. Given a model A
variables and rules I to 4 above. We write of C, let MV(A) denote the category of pairs

(B, ae) consisting of an object of M-D and a
C-morphism ce : A --+ v.(B).

Clearly, rpx implies r i- T which in turn
implies M(lr) _ M(l,T). The key result that concerns us is

303

Proposition 1 If A is a model of C then Two problems arise in type inferencing:
there is an object .7 (A) and C-morphism automatic insertion of coercions, and poly-
S: A -* v.($F,(A)) such that for any model morphism. The object of the first is to
B and C-morphism a : A -+ v.(B) there is find "smallest" domains in which all opera-
a unique V-morphism P : Y,(A) -+ B such tors in the expression and its subexpressions
that v.(#) o 0 = a. Furthermore, the con- are defined. For example, the polynomial
struction .F,(A) is a functor Me = MDv. ring functor Pol(R) comes equipped with a
It is called the free functor of the parameter- canonical inclusion R -- Pol(R), and the in-
ization. tegers come equipped with a canonical inclu-

sion Int -4 Rat into the rational numbers.
This proposition says that MV(A) has an ini- In expressions such as
tial object. The proof uses a generalization
of the term algebra of a specification [3].

Several special cases are sufficiently im- we want to make the inference that 3 and
portant to have their own notations. Let 2 must be coerced to Rat in order to carry
Cl,... ,C, be specifications. The product out I; (3/2)X must be coerced to Pol(Rat);
specification, IICj = C1 x ... x C, is the dis- and 1 must be coerced first to Rat and then
joint union of the specifications Ci. This con- to Pol(Rat). Inferencing of this kind is nor-
struction generalizes easily to inverse limits mally made from the bottom up, (the inside
over a finite diagram of specifications, and is of the expression outward): the type of each
functorial over the category of specifications constant is first determined. Then, given an
and views. J1 ... , X, are symbols and V operator all of whose operands are typed, a
is paramete., by IICi, we may denote this knowledge base of functors and canonical in-
parameterization by D(X1 : C,..., X,, : C,,). clusions is searched to find one or more co-

If C = (S, n, r) is a specification and X is ercions that will permit the operator to be
a set of typed variables not in B, let C[X] = typed.
(s, (E U X), r). We will call it the C-algebra The second problem is more difficult.
generated by X. If A is a C-model, then the Consider
initial algebra of C[XI(A) is the algebra of (x + y) 1~n + 1
A-forms A[X]. Similarly, if e is a set of 1 + nx
equations over ., then the quotiern of C by where the user wants to work with ratio-
o is the specification C/E) = (S, L, (r U 1)). nal functions over a finite field of p-elements.
C/O is a contravariant functor of equational This formula presents the problem of poly-
deduction. morphic constants. To a mathematician, the

types of each subexpression are immediately
clear: n is an integer variable which must

3 Type inference, be reduced modulo p in the denominator of
the expression, x and y are finite field vari-

At least three levels of type inference are use- ables, 1 appearing in the exponent is an in-
ful to an algebraic simplification system: teger and the other l's are the multiplicative

identity in the finite field. Inferences of this
sort: determine, for example, whether a kind are often made from the top down: the

form in RationalNumbers is in NZRat. total expression must be over a finite field, sc.
the fraction bar and its two operands must

domain: determine, for example, whether a be also. Exponentiation requires an integer
form is in RationalNumbers. second argument; therefore, 1 + n must be

an integer; and so forth.

category: determine, for example, whether In this section I will provide a structure to
RationalNumbers is to be considered a deal with the first of these two problems. I
Ring, a Field or an OrderedSet. hope to deal with the second in a later paper.

304

3.1 Algebraic Theories. where F 4 F corresponds to the identity

I will provide for a knowledge base to deal morphism. The view Cat, =#, Catt for sCt
coercion by introducing an- induces a a forgetful functor from A, to At.with automatic ceiobyitdunga- If F 45 G and G 4o F we write F = .

other level of abstraction: algebraic theory.

The first component of a theory C that
we need is a hierarchy of categories. Let 3.2 The total algebra.
(C, g) be a poset, and Cat a monic functor
from C to the category of specifications and tinu e nttion o theaprvioubsecview. W wil asum tha fo eah rla- tion. We want to construct a total algebra,views. We will assume that for each rela- Tto u hoy
tion sCt in C that the view Cat, =* Cat, is Tote, of our theory.
a parameterization and an embedding, and Let T be the set of all triples c.f.s where
we shall call Cat, a specialization of Catt. lence class of domains F E c. Order T by
Let Cat, = (S,,., r.). Our notation will tecelass ofd s F d .
be simplified if we assume that the view the relation c.f.s " d.g.t if
Cat, =* Catt is an inclusion of St in S, dCc,
and Et in E, where St 9 S, is cofinal. f C-4 g, and

Given a hierarchy of categories, (C, Cat), 8 < t.
we now need to specify a family 0 of functor
symbols. Functors arise in two ways: either It is easy to check that this is a partial order.
initial specifications, or formal functors- Construct an operator set 'i as follows: for
that is, symbols that are to be interpreted each w E T*, d.g.t E T, where wi = ci.fi.ti,
as functors on models defined by some al- let o E 41,,, if
gorithmic method (see model morphisms be-
low). Here we are only concerned with the (d= ci, for all i,
formal properties of functors. We assume f t= g, for all i, and
the pair (C, I) is an order-sorted signature, a E tt .. tn,.

and we will use the symbol 0 also to denote For constants we must make a special rule:
our whole theory. We will call a term F E T9 a Eonsants if us mama sc a aE:
a domain. We will write F E s if the least gr E qd.g., if d is maximal such that c E Sa,
sort t of F is a .pecialization of s. g is initial in d and E , This clearly

Finally, we need to allow for domain in- requires further assumptions on 0.
ferencing of expressions. Let A = Te be the for all theories:
set of domains associated to our signature
(C, 0). We need a predicate on A repre- 1. C is Noetherian and has finite least up-
senting "canonical inclusion." For F, G E 8, per bounds.
write F 4 G for "F is canonically included
in G in the category s." This predicate must 2. If dCc, 3 E Sd and s < d in Sc, then
satisfy the following: d E Sd.

1. ifF3+G, thenF, GEs. 3. For each c E C, (Ac,-) is co-
Noetherian and has finite greatest lower

2. if F 4 G and sCt, then F "4 G. bounds.

3. F 4 F. The following are valid under these assump-
tions.

4. if F 4 G and G H, then F 4H.
Lemma 1 '• is an order sorted signature.

Another way of viewing all this is to con-

sider for each s E C the set A, = {F E 8} to Proof. Straightforward.
be the objects of a category with at most
one morphism F - G whenever F ! G, Lemma 2 (b is regular.

305

Proof. By [41, lemma 7, it suffices to show functors
that if wo - w, J2 and a E wjt, n 1',t,

then there exists w -4 w 1 ,w 2 such that a E[: VariableSets

,w and Wo -< w. The rest of the proof is (VX : symbol).[X]: Vars -= Vars

lengthy but straightforward. Z : Rings
Using now the results of [41, we have im- (ARX).PolR[X]: Rings x Vars

mediately our main theorem.
=rRings

Theorem 1 If r is a term in the operators inclusions
E and r is typeable-that is, there exists
c.f.s such that T E ("D),.f..-then T has a 11 '- [XJ
least type c.f.s. We call c the most general [X[Y] '-+ [Y][X]
category, f the smallest domain, and s the (XIIX Ix]
least sort ofr. F"* G. [XIF -- [X]G

A - B = PolR[A] -* PolR[B]
R S PolR[A ' Pols[A]

3.3 Example: Polynomials. A Set PolR[AJ

category Sets R -*f PolRIA]

sorts S end Polynomials

end Sets
3.4 Decidability.

category Rings =Sets + Integers + In order to carry out typing of expressions,

operations one would clearly like the canonical inclusion
relation on the functor algebra of a theory to

+: S x S .. S be decidable. The following result is an aid

-: S -* S to setting up decidable relations.

×: S X S S Proposition 2 Let a functor algebra To be
id: Int - S generated by a finite set of functors 0. Let

Axn.x": S x PosInt .-- S. R be a finite set of relations Fj CA Gi, and
let B C (be a finite subset of the functors

equations ... which preserve canonical inclusion. Let 7Z be
the relation on T generated by the axioms of

end Rings canonical inclusion plus the following axiom:
if Fi - Gi and H E E then

category VariableSets = Sets + H(F,,..., F.,) C14 H(G,..., GO)

sorts Vats Let C be the lexicographic order on To. If'
subsorts Vars < S R g C then the relation R is decidable.

end VariableSets Proof. The lexicographic order provides a

notion of the complexity of a term. Since
theory Polynomials each relation in R increases the complexity

of a term, there are only finitely many infer-
categories Sets, Rings, VariableSets. ences to check if two terms are related.

subcategories Variables < Sets, Decidability of our typing algorithm is not
Rings < Sets strictly necessary; in practice, it suffices that

306

our algorithm be semi-decidable--that is, ty- of theories-such as, VariableSets in the ex-
peable expressions will eventually be typed. ample above-can be implemented with the
The reason for this is that expression typ- obvious easy and fast algorithms.
ing is part of an interface with a user who
will almost always generate easily typed ex- References
pressions. A typing system may be pro-
grammed to yell for help if a typing prob- [1] S. K. Abdali, G. W. Cherry, and N. Soif-
lem uses excessive resources. Experience fer, A Smalltalk System for Algebraic
shows that with the closely related problem Manipulation, OOPSLA '86 Conference
of typing the polymorphic A-calculus, that Proceedings, SIGPLAN Notices, Vol. 21
the algorithm is reasonable computationally No. 11, Association for Computing Ma-
although only semi-decidable (6]. chinery, Nov. 1968, pp. 277-283.

4 Models. [2] M. Arbib and E. Manes, Arrows.
Structures, and Functors, Academic

I discuss in this section the computational Press, New York, 1975.
meaning of a model of a functor. Since I am [3] H. Ehrig and B. Mahr, Fundamen-
proposing a semantic system as an adjunct tals of Algebraic Specification 1,
to a rewrite rule system, a functor can, in Springer Verlag, Berlin, Heidelberg,
principle, be automatically implemented by 1985.
term rewriting from its initial specification.
That is the approach of OBJ3. However, [4] J. A. Goguen and J. Meseguer, Order-
such implementations alone are unlikely to Sorted Algebra I, draft manuscript, May
satisfy either the efficiency needs or hack- 1988.
ing instinct of mathematical users. I propose
here a meaning for model which encompasses [5] R. Jenks, iR Sutor, and Stephen Watt,
both algebraic and algorithmic specifications Scratchpad II: an abstract datatype
of a model. system for mathematical computation,

We assume here that our implementation Mathematical Aspects of Scien-
language supports functions as first class ob- tific Software, The IMA Volumes in
jects. Mathematics and its Applications 14,

Springer Verlag, 1988, pp. 157-182.
Definition 6 A model morphism for a [6] F. Pfenning, Partial Polymorphic Type
functor F : C, x ... x C,, : D is a fune- Infenc n d i o r p Uic a-
tion M(M1,...,M) of model morphisms Inference and Higher-Order Unifica-
M, ... , Mn that returns a function from tion, Proc. of 1988 ACM Conf. on Lisp•.. M' ta eun ucinfo and Functional Programming, Associ-
operators in VD to functions in the underly- atin o C o gachine, 1988,
ing implementation language. That is, given ation for Computing Machinery, 1988,
implementations for objects in Ci, ... , C, the pp. 153-163.

function M(M 1 ,..., M,)(a) implements the [7] D. Rydeheard and R. Burstall, Corn-
operation a of of an object of D. putational Category Theory, Pren-

tice Hall, New York, 1988.
The advantage of treating models in this

abstract way is that-assuming our rewrite [8] R. S. Sutor and R. D. Jenks, The type
rule system can read model morphisms- inference and coercion facilities in the
a computation specified by algebraic tech- Scratchpad II interpreter, Proc. SIG-
niques is indistinguishable from one speci- PLAN 87 Symp. on Interpreters and
fled algorithmically. In particular, our se- Interpretive Techniques, SIGPLAN No-
mantic system itself can be implemented in tices, 22,7 pp. 56-63.
such a rewrite system so that components

307

SYMBOLIC COMPUTATION WITH SYMMETRIC
POLYNOMIALS

AN EXTENSION TO MACSYMA

Annick Valibouze
LITP,

4, Place Jussieu, 75252 Paris Cedex 05

and 'GRECO DE CALCUL FORMEL" No 60

UUCP: avb@litp.univ-p6-7.fr

INTRODUCTION
We present here a package of manipulations of symmetric polynomials implemented in Fran-

zlisp. This package, called SYM, constitutes at present an extersion of the system of symbolic

computation MACSYMA. It performs a few manipulations on symmetric polynomials; it can also

be used for direct applications. Some algorithms extend easily to functions that are symmetric

with respect to sets of variables (i.e. multi-symmetric functions); these functions will be dealt

with in the present paper.

1 Definitions and notations

1.1 Partitions and multi-partitions

Let us first introduce the notion of a partition, which is the basic object that allows us to

represent the symmetric polynomials in the most possible contracted form. For more details,

the reader is referred to [Andrews] or [Macdonald].

A partition is a finite or infinite sequence I = (i, i2,... ,i,,...) of non-negative integers in

decreasing order: il > i2 > ... i, > ... , and containing only a finite number of non-zero terms.

We make the convention that sequences only differing by the number of zeros at the end are

equal. For example (2,1) and (2,1, 0,0) are the same partition. The non-zero ih of I are called

the parts of I. The number of parts is the length of I and the sum of the parts is the weight of
I. We shall call multi-partition of order p a finite sequence I of length p, I = (11,12,... I P)

where each Ik is a partition.

1.2 Generalities about symmetric functions

Let A be a ring, and let D = (di, d2,..., dp) be an element of N P with d, +d 2+...+ dp n. Let

X - (z(), z(2),..., Z()), where each x(r) is an alphabet of dr variables x , X,...,). Then

RD = A[XJ is the ring of polynomials in the n variables x) (i-- I,...,dr and r p)

with coefficients in A. The product Sd, x Sd2 x ... x Sd, of the symmetric groups Sd, will be

denoted by SD.

For each element a of S, and each finite sequence of n elements T = (t1 , t2, ... , t,), a(T) is the
sequence (t,(l),t,(2)...t,(,)). This generalizes as follows: let T = (t(), ... ,t(P)) be a p-tuple
of finite sequences t(r) of d, element. For each element a = (al, a2, .. . , ap) of SD we define:

cr(T) = (,,.(tC'.)),-,(t(2)),o-,(t(p))).

Gs,(T) will be the stabilizer of T under the action of SD (the subgroup of the elements of SD
leaving T unchanged). If f E RD, Os,(f) will denote the orbit of f under SD, i.e., the set of
polynomials h of RD such that h(X) = f(a(X)) for an element a of SD.

A polynomial P of RD is said to be multi-symmetric of order D if P(X) = P(a(X) for
all a E SD (i.e. card(OsD(P)) = 1). This algebra of invariants will be denoted by R D. If

p = 1 we simply say that P is symmetric.

For p = 1 we take D = d, = n and X = (x1,x2,...,x,). If U = (ut,u2,..., u,) is an element
of Nn, we define the monomial XU by:

XU = IXU,2 ... XU,Xl 2 n.X I

and if U is a D-tuple having p finite sequences of integers u(),..., u(P) of length dl,..., dp,
respectively, then:

XU = (x(1))u(l) ... (x())U(P) .

With a multi-partition I we associate the monomial form MI(X), which is the sum of the
elements of the orbit of XI under the SD-action:

M1 (X) = E X"(1) .

oESo/G8s (I)

Examples:

- p = 1 - M(s,2,2)(x, y, z) = x3y 2z2 + y'x 2z2 + z3x 2y 2.

- p = 2 - For X = ((,y), (a,b,c)) we have M((S,2),(l,))(X) - x.y 2ab + Xly 2 ac + Z3 y2bC +

y 3x 2ab + y3 X2ac + y 3x 2bc.

1.3 Contracted and partitioned forms

A monomial form MI(X) will be represented either by a monomial X of the orbit of X1,
called a contracted monomial form, or by the partition I. If we give it a coefficient, then
the monomial form is represented by a contracted term or by a partitioned term, the latter
being a list in which the first element is the coefficient and the rest is the partition. We can
now represent a symmetric polynomial (or a multi-symmetric polynomial) by a contracted
polynomial, the sum of the contracted terms, or by a partitioned polynomial, the list of the
partitioned terms.

For example the contracted polynomial associated with the polynomial 3x 4 +3y'-2xy6 -2xsy,
symmetric in the variables x et y, is 3x4 -2xy' and the partitioned polynomial is [[3,4],[-2,5,1]J].

309

1.4 Types of arguments

For the description of the function we use the following notations:

card is the cardinality of the set of the variables.
ej : ill elementary symmetric function
pi : OhI power function
I-Ole = lei , e2I e5, ..., ea, where the number n is important in some definitions of the function

1_cele = [card,ei, e2, es, ..., e}I 1_pui = [plIp2,ps, ...,fp,]

1Lcpui = [card,pI,P2,Ps,..., Pm]
sym < - - - > is a symmetric polynomial, but the representation is not specified
fmc < - - - > contracted monomial form
part < - - -- > partition
tc < - - - > contracted term
tpart < - - - > partitioned term
psym < - - - > symmetric polynomial in its extended form

pc < - - - > symmetric polynomial in a contracted form
multi-pc < - - - > multi-symmetric polynomial in a contracted form under SD
ppart < - -- > symmetric polynomial in its partitioned form
P (Cx,..., x,) is a polynomial in the variables XI,..., Xq
ivar is a list of variables of X in the case p = 1. [Ivar,...,Ivarj is a list of lists of variables
representing the multi-alphabet X and where the variables of lvarj represent the di variables
of the alphabet x(j).

Remavks :
1- The functions of SYN can complete the lists, such as Lcele, with formal values. This values
are ei for the i"h elementary symmetric function and pi for the ill power function.
2- There exist many kinds of evaluations for the polynomials under MACSYMA : ev. expand.
rat, ratsimp. With SYM the choice is possible with a flag oper. In each call of a function,
SYM tests if the variable oper is modified. In this case, the modification is made as follows: if
oper = meval, it uses the ev mode, if oper - expand, it uses the expand mode (it is more
efficient for the numeric calculations), if oper = rat, it uses the rat form and if oper =
ratsimp, it uses the ratsimp form.

2 Description of the available functions

2.1 Change of representation

* tpartpol(psym.lvar) -* ppart

partpol(psym. Ivar) - ppart

give, in the lexicographic order, increasing and decreasing, respectively, the partioned
polynomial associated with the polynomial psym. The function tpartpol tests if the
polynomial psym is actually symmetric.

* contract(psym,lvar) - PC
tcontract(psymilvar) PC
act as partpol and give the contracted form.

310

* cont2part(pc,lvar) --+ ppart
gives the partitioned polynomial associated with the contracted form PC.

* part2cont(ppartlvar) - pc
gives a contracted form associated with the partioned form ppart.

* explose(pclvar) & psym
gives a contracted form associated with the extended form psym.

Possibly symmetric
polynomial 1

contract- or

or

tcontcant

Examples:

tpartpo1Cexpand(x'4+y'4+z4-2*x*y+x*z+y*z)) , [x~y ,z]) ;

Now suppose that the polynomial 2cz*b~x'~P is the contracted form of a symmetric polynomial

in Z[z,v, zj.
pc : 2*a'3*b*x'4*y$

psym : explose(pc, [x,y,zJ)];
3 4 3 4 3 4

2a byz i2a bxz +2a by z
3 4 3 4 3 4

+2a bx z+2a bxy +2a bx y

311

If we use the function contract we find again the contracted form:

contract(psym, [xy ,zD;
3 4

2a bx y
partpol(psymi,[x.y,z]);

3
[[2a b, 4. ID]

ppart : cont2part(pcEx,yzD;
3

[[2 a b, 4, 1]]
part2cont(ppart, Exy,z]);

3 4
2a bx y

2.2 The partitions

" kostka(part i,part2) (written by P.ESPERET) gives the Kostka number associated
with the partitions part Iet part2.

" treinat (part) - list of the partitions that are less than the the partition part in the
natural order and that are of the same weight.

" treillls(n) - list of the partitions of weight equal to n.

" Igtreillis(nm)

" lgtreillis(n,m) - list of the partitions of weight equal to n and of length equal to
m.

* ltreillis(n~m)

" lgtreillis (n.m) -- list of the partitions of weight equal to n and the length less than
or equal to m.

2.3 The orbits

* orbit(p(zl,...,x) ,1var) - Os.(p)
gives the list of polynomials of the orbit Os. (p) where the n variables of p are in the list
ivar. This function does not consider the possible symmetries of p.

e multi-orbit(p0 [Ivarj,lvar.... 1var]) -& Os" (P)
gives the orbit of p under SD (see above), where the variables of the multi-alphabet X

are in the lists 1vari.

orbit(a*x+b*y, (xy]);
[a y + b x, b y + a x]

orbit(2*x+x**2. [x,y,z]);
2 2 2

[z + 2 z. y + 2 y, x + 2x]

multi.orbit(a*x+b*y, [[xy], [a,b]]);

312

[by ax, y b x3

multi.orbit(x+y+2*a, [[x,y, .a,bc]]);

[y + x + 2 c, y + x + 2 b, y + x + 2 a]

2.4 Contracted product of two symretric polynomials

The formula is in [Vl] or [12) and the proof in JV2].

9 multsym(pparti, ppart2.,ard) - ppar
The arguments are two partioned forms and the cardinality. The result is in partitioned
form.

For example, take two symmetric polynomiais in their contracted form. We first compute the
product in the standard way and then with the function multaym. We are in Z[z,y and the
two contracted forms pcI and pc2 are .ssociated with the two symmetric polynomials pi and
p2.

pcI x^2*y*
pc2 x$

p: ep1lose(pci.[xy]);
2 2

xy +x y

p2 explose(pc2,Ix.y]);

There is the product of the two symmetric polynomials with the standard operation of MAC-
SYMA:

prod : expand(pl*p2);
3 2 2 3

xy +2x y +x y

we verify below that this is the extended form of the product obtained with the function
multsym:

contrtct (prod, Ix,yJ);
3 2 2

xy +2x y

ppartl : cont2part(pcl.Ex,y])$
ppart2 : cont2part(pc2,[xy])*

part2cont(multsyn(ppartl, ppart2, 2), [x,y]);
2 2 3

2xy +x y

2.5 Change of basis

The monomial forms M14X) where I varies in the set of partitions of length < n are an A-base
of the free A-module R ' . The Schur functions also form an A-base of the free A-module.

313

We have the following algebra bases: the elementary symmetric functions (A-base), the power

functions (Q-base if A = Z) and the complete functions (A-base).

i

When I = (1, 1,..., 1, 0,0,...,0) where 0 < i < n, the monomial form ei(X) = M1 (X) is also

called the 21h elementary symmetric function over X, with the convention eo = 1 and ej = 0
for i > n. When I = (i), the monomial form pi(X) = MI(X) = F,,x xi is called the ith power

function over X, (po = n). The it h complete symmetric function, hi(X), is the sum of the

monomial forms MI(X) where the weight of I is i, (ho = 1 and h, = 0 if r < 0).
Let .M be a matrix and I = (il,i 2,.. .,in) a sequence of Zn; let All be the minor of J[

constructed with the lines 1,2,...,n and the columms ii + 1,i2 + 2,...,in + n, with the
convention MI = 0 if there exists r such that ir + r < 0.

Let S = (h._j)q,>j> be an infinite matrix:

ho hi h2 h3 ...

0 ho hi h 2 ...
o o ho h, ".
0 0 0 ho ...

0 0 0 0 ...

where the hi are the complete functions. We call Schur function of index I the minor Si.

Monomial forms ",

elem

pui

Elementary Schur
symmetric functions

functions

i. cschur2comP
ele2pu pu2e2cop

Pwer =functions =omplete functions

comp2pui

a b expression of b as a function of a

314

e elem(1.cele,symlvar) -- P(el... eq)
decomposes the symmetric polynomial sym into the elementary symmetric functions with
the algorithm in [Vii.

* multLele...cele. 1.. cele] ,multi-pc. [varl.... lvarp]) -+ P(1.cele.... .lce]

We have the multi-symmetric polynomial multi.pc in its contracted form. This function
decomposes successively in each package lcelej of elementary symmetric functions of
the alphabet x(j) (see the section 1.2).

* pui(l_cpuisym,lvar) --- P(pl pq)
decomposes the symmetric polynomial sym into the power functions with the algorithm
in (VIi.

0 multipui(.lcpui - .. puip] multi-pc, lvarl -..... var]) - P(1.cpuil.. l_cpuJ

see multLelem.

In this examples the symmetric polynomials are in contracted form.

elem([],x**4 - 2*y*z, [xy,z]);
4 2 2

el - 4 e2 el + 4 e3 el + 2 e2 - 2 e2 - 4 e4

If the cardinality is 3 we have:

elem([3] x**4 - 2*y*z,[x,y,z]) ;
4 2 2

el - 4 e2 el + 4 e3 el + 2 e2 - 2 e2

If the cardinality is 3 and el = 7 we have:

elem([3.7] .x'4-2*x*y, [x,y]);
2

28 e3 + 2 e2 - 198 e2 + 2401

For the power functions we know that if the cardinality of the alphabet X is n then the O1h

power function, i > n, depends algebraically on the P1,P2,. . . ,P,, For this reason, when the
function pui completes the list 1.cpui with formal values and the degree of the polynomial
sym is greater than n, the Vth power functions for i > n do not appear. For this computation
the function pul uses the function puireduc (see below).

For following formulas for the change basis we refer to IMacdonald] and [Lascoux, Schfitzenberger).

0 ele2pui(mn.lcele) -- l.cpui
gives the first m power functions as functions of the elementary symmetric functions with
the (Girard]-Newton formulas.

* pui2ele(n.lcpui) 1- lcele
gives the elementary symmetric functions when we know the power functions. If the flag
pui2ele is girard, the result is the first n elementary symmetric functions and if its is
close, the result is the n th elementary symmetric function.

In the following example we find the first 3 elementary symmetric functions when the power
functions are generic.

315

pui2ele(3.0);
2 3

p1 p2 p3 p1 p2 pi
[3. pl, --- ------- - ---]

2 2 3 2 6

Now the cardinality of the alphabet X is 3 and the first power function is equal to 2. We
remark that the 4th elementary symmetric function is zero, because the cardinality is 3. We
compute the first three power functions below.

pui2ele(4M [3.2));
4 - p2 p3 - 3 p2 + 4

[3, 2 - - - -----------. .0)
2 3

ele2pui(3, []);

2 3
[3. el, el - 2 e2, 3 e3 - 3 el e2 + al I

In the neXt example, since the cardinality is 2, the 3th elementary symmetric function is zero:

ele2pui(3, [2));
2 3

[2, el, el - 2 e2, el - 3 el e2]

* puireduc(n.cpui) - [card-pi,ps,ps,...,p,]
gives the first m power functions when the first n are known. The cardinality is the first
element of 1.cpui.

In this example card -2 and we search the first three power functions. We can give numerical
values to the first two power functions in the list 1.cpui.

puireduc (3, [2]) ;
3

3 pi p2 p1
[2, p1, p2 ------------

2 2

* ele2comp(m , lcele) - 1ccoMp
gives the first m complete functions as functions of the elementary symmetric functions.

* pui2comp(n, lcpui) - L.ccomp
gives the first m complete functions as functions of the power functions.

* comp2ele(n, 1.ccomp) -- .cele
gives the first m elementary symmetric functions as functions of the complete functions.

0comp2pui(n, 1-ccomp) 1 -- cpui
gives the first a power functions as functions of the complete functions.

e mon2schur(liste) -- pc
compute the Schur functions as functions of the monomial forms. The list appearing as
argument is a p-uple I of intergers, it represents S, the Schur function of index I (see
Section 1.2).

316

* schur2comp(P, [hij.... hiqD) -- list of lists

The polynomial P is A[hj,... ,haj, where the hi are the complete functions. This func-

tion expresses P as a function of the Schur functions, denoted by S, in MACSYMA. It is

imperative to express the complete functions by means of a letter h "concatenated" with

an integer (ex: h2 or h5).

We first verify that the Schur function S(1,1,1) is equal to the third elementary symmetric
function and that S(s) is equal to the third complete function (this is a general result).

mon2schur([1,1,1]);

xl x2 x3

mon2schur(3]J);
2 3

xI x2 x3 + xi x2 + xl

mon2schur([1.2]);
2

2 xI x2 x3 + xi x2

Let us see on two example, how with a circular set of operations we can go back to the initial
lists [3.pi.p2,p3] and [[3.hi~h2.h3].

al : pul2comp(3,[3]);
2 3

p2 p1 p3 pi p2 p1
[3. pl. -- + --- , -- - ---- + ---

2 2 3 2 6

a2 : comp2ele(3, al);
2 3

pI p2 p3 pi p2 pi
[3, pl,- -- - .-- --.- + ---]

2 2 3 2 6

a3 : ele2pui(3,a2);

[3. pl, p2, p3]

a4 comp2pui(3.[]);
2 3

[3. hl, 2 h2 - hl , 3 h3 - 3 hi h2 + hi J

a6 : pui2ele(3.a4);
2 3

[3, hi. hi - h2, h3 - 2 hi h2 + hi I

a6 : ele2comp(3,a6);

(3. hi, h2, h3]

In the next example we show how to express a Schur function through the monomial forms
(see the label c48), and then through the complete functions (c5o), the elementary symmetric
functions (c51) and the power functions (en c52).

317

(c48) mon2schur([1,2]);
2

(d48) 2 xI x2 x3 + xi x2

(c4g) comp2ele (3. 0);
2 3

(d4) [3, hi, hi - h2, h3 - 2 hi h2 + hi]

(cBO) elem(d49,d48,[xi,x2,x31);

(dMO) hl h2 - h3

(c61) elem([,d48, [xix2,x3]);

(d51) el e2 - e3

(c52) pui([],d48,(xI,x2,x3]);
3

p1 p3
(d62)

3 3

(c53) schur2comp(hl*h2-h3, [hl.h2,h3]);

(dM3) 0
1, 2

(c54) echur2comp(a*h3, [h3J)-;

(d54) s a
3

In the last instruction we have obtained the polynomials hjh2 - h3 and hs on the basis of the
Schur functions.

2.6 Direct images

In this section, we apply the previous functions to the transformations of polynomial equations.

The direct image intruces in (G,L,V or in (V2] can represente the The resultant (function
resulsym), the resolvents, such as Galois or Lagrange's (see [V2] chapter 9 p.91), or more
generally minimal polynomials, can be seen as direct images ([G,L,V] and [V21). Suppose that
A is a field k. Let f be a function in RD and let P,P,...,P., p polynomials of degrees
di,d 2,.. .,d, respectively. Associate with each P the set () .. ,a)) of its di roots in an
algebraic closure K of k in an arbitrary order (1 < j _< p), and choose an evaluation map
Ea: RD -- K which is an algebra homomorphism which sends the variable x$') to a('). The
direct image f. (P) is the univariate polynomial whose roots are the images under the map E.
of the elements of the f-orbite OsD (f), i.e.:

f. (P)()= (x - E.(g)).
; gGOs (I)

. resulsym(p,q,x) -- resultant(p,qx)
Computes the resultant of the two polynomials, p and q, using changes of basis on

318

symmetric functions. The computation is not symmetric in p and q., The computing
time is best when the degree of p is less than the degree of q.

• direct (IP',P2,...,P ,j,y,flvarl,L ar2,...,var]) & f. (PI, P 2,. •.,
where the lists Ivari representing X (see p.3) allow us to find the type of the function f.

We now compute the direct image in two different ways. The first one uses, at the top level,
the previous functions in order to obtain the elementary symmetric functions of the roots of
the polynomial given by the function direct (which is the second way). We can change the
flag direct. If it is puissances (the default value) the function direct uses the function
Multi.pui. If it is ' mentary, the function direct uses the function multielem (generally
less efficient).

1 : pui.direct(multi-orbit(a*x+b*y. [[x.y], [a,b]]), [[x,y], [a.b]]);
2 '1

[a x. 4 a b x y + , x]

m: multi-elem([[2,e.e2],[2,f1,i2]],1[1].[[x,y].[ab]]);

el It

n: multLelem([[,el,e2],[2,f1.,2]],112],[x,y],[a,b]]);
2 2 2 2

8 e2 f2 - 2 el f2 - 2 e2 It + el It

pui2ele(2, [2,mn]);
2 2

[2, el It, - 4 e2 ±2 + el f2 + e2 "t I

direct([z^2 - el* z + e2. z'2 - I1* z + 12], z, b*v + a*u, [[u, v], [a, b]]);

2 2 2
z - el t z -4 e2 f2 + el f2 + e2 I1

The coefficients of this polynomial in z are equal (up to a sign) to the elementary symmetric
functions obtained before.

* somrac(l.ele,k) - P(ei....,en)(x)
gives the polynomial whose roots are the sums k by k of the roots of p. The polynomial
p is represented by the elementary symmetric functions of these roots, listed in L.ele.
Here the list L.ele cannot be completed by formal values. If the flag sorac is pui
(dMfault value), the function somrac uses the function pui, and if it is elem then it uses
the function elem.

" prodrac (lele ,k) is the same function, but here we transform the polynomial using a
product instead of the sum.

We remark that these functions are special cases of direct images.
For example, take the polynomial z4 - -1 - 25x2 + 25z:

somrac([1,-25,-25,0] .2);
6 5 4 3 2

x -3 x -47 x + 99 x + 550 x -600 x

319

2.7T Power function on a particular alphabet

Let k be a field.

o pui..direct([f,.. .],Evarl, .. ., lvarp)
Hypotheses : each fi is a polynomial in k[XJ (see the definition of X in the first section),
and eachi symmetric function on the alphabet A = (f1, &,.. ., fq) is multisymmetric
under SD in RD (i.e. it is in RD). This is the case when f = fl, the function defined in
subsection 2.6, and the alphabet represents the orbit under SD, a product of symmetric
groups. The function pui..direct computes the first q power functions on the alphabet
A. As these functions are multi-symmetric in RD, the function pui-direct gives the
power function in a contracted form in R~D(seubcto1.)

pui..diract ([bsy + a*x, &*y + b*x],(tx,y)Aa,bfl);,
2 2

[a x, 4 a b x: y + L xJ

pui..direct ([y+X+2*c, y+x+2*b. y+x+2*a3J Ex,y] , a,b,c)J);
2 2

[3 x: +'2 a, 6 x: y + 3 x + 4 a x: + 4 a
2 3 2 2 3

9 xy +12 ax y +3x + 6a x+ 2 a x+8a I

References

[Andrews) 1976, George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its
Applications, Vol. 2, Section Number Theory, Addison Wesley.

[Girard), 1629, Invention Nouvelle en Algbbre, Amsterdam.

[G,L,V] 1988, M. Giusti, D. Lazard, A. Valibouze, Symmetric polynomials and elimms:ation, Notes
informelles de Calcul Formel IX, Pr6publication du Centre de Math~matiques de l'Ecole Poly-
technique, M810.0987.

[G,L,Vi 1988, M. Giusti, D. Lazard, A. Valibouze, Algebraic transformation of polynomial equa-
tions, symmetric polynomials and elimination, Proceedings of ISSAC-88 (Roma, Italy), Springer-
Verlag.

[Lascoux], Alain, 1984-1985. La risultante de deux polyn6mes, Sdminaire d'Algbbre M.P. Malliavin.

[Lascoux, Shiitzenbergerl 1985, A. Lascoux, M.P. Schfitzenberger, Formulaire raisonni de fonctions
symitriques, L.1.T.P, U.E.R. MATHS, Paris 7, L.A. 248.

[Macdonald), I.G., 1979, Symmetric functions and Hall polynomials, Clarendon Press, Oxford.

[VII 1897, A. Valibouze, Fonctions symitriques et changements de bases, Proceedings of the European
Conference on Computer Algebra EUROCAL '87 (Leipzig, RDA), Springer-Verlag.

(V21 1988, A. Valibouze, Manipulations de fonctions aymitriqueB, Th~se de l'Universit6 Paris VI.

320

SIMULTANEOUS COMPUTATIONS

IN FIELDS OF DIFFERENT CHARACTERISTICS

Dominique DUVAL
Facult6 des sciences

Laboratoire de thiorie des nombres et algorithmique
F-87060 LIMOGES Cedex, FRANCE

Introduction- This paper presents new software for computing simultaneously in
fields of different characteristics. Such computations are made possible thanks to:

e The computer algebra system Scratchpad 2 [Je], especially its wide genericity features.

* And the dynamical evaluation principle : It generalizes traditional evaluation and was
first used to deal with algebraic numbers [D-D-D, D-D-1].

The prime fields are the field Q of rational numbers and the finite fields Fp with p
elements for every prime number p. It is known that every field K contains one and only
one prime field. The characteristic of K is the integer 0 if K contains Q, and it is p if K
contains Fp.

It is possible to build a Scratchpad domain in the Field category (in the Scratchpad
sense, i.e. essentially with equality test and the four elementary operations) which represents
several "usual" fields. For example the DDPrimeField domain represents all the prime fields
(the "D"'s here and there are the "trademark" for the dynamical evaluation features which
are developped in Scratchpad). It means that a result obtained in DDPrimeFteld is valid in
Q as well as in any of the Fp's.

But the result of a given computation may depend on the characteristic: For example,
the boolean value of 12 = 0 is true in characteristic 2 and ' - I-se in every other
characteristic. As a consequence, if a domain in the F -W' :epresents fields of
several characteristics, it must be possible for a function , iat domain to return
several values, depending on the characteristic. This paper e.. flow it is possible, and
easy to use.

Prime fields- Let us begin with a simple example. Let K denote some domain in
the Field category, and POLY the domain UP(X,K) of univariate polynomials in X with
coefficients in K. Then the function sqfr?, from POLY to Boolean, defined by

sqfr?(poly) == if degree(gcd(poly, deriv(poly))) = 0 then true else false

tests whether its argument poly is squarefree or not. It can be applied with K=RN (the field
of rational numbers) or any "usual" field which can be constructed in Scratchpad. It can
also be used with Kf=DDPrimeField (abbreviated DDPF):

POLY:= UP(X,DDPF)

sqfr?(poly:POLY):B == it degree(gcd(poly,deriv(poly)))=O then true

else false

polyO:POLY:= X**12+i

allCases(sqfr?,polyO)$DDCP(POLY,B)

E value is false in case characteristic divides 12,

value is true in case characteristic divides 11,

value is true in case characteristic does not divide 12*11]

Note that we have not called sqfr?(polyO), as in an usual field, but allCases(sqfr?,polyO).
The function allCases is taken from the DDConirolPackage (abbreviated DDCP). The ar-
guments of this package respectively are the domain and the codomain of the function sqfr?.
The result is that the value of sqfr?(polyO) depends on the characteristic of the field. Pre-
cisely, it is false if the characteristic divides 12 (i.e. if it is 2 or 3), and it is true in every
other case.

The package DDCP has two parameters D1 and D2, which may be any Set. It contains
the function allCases. This function has two arguments : a function f from D1 to D2, and
an element x of D1. The value of allCases(fx) is a finite list of results. Each result is made
of a value (of type D2) and of the case where this result is valid. A case here is a set of prime
fields, which are described by their characteristics. The list of results is always complete
(every prime field appears in one of the cases) and irredundant (a given prime field appears
in only one of the cases).

The generic and degenerate cases- What happens if you forget about allCases,
and ask for f(x)? Let's try

sqfr? (polyO)

true

You just get the generic case. Actually, starting from DDPF which represents any
prime field, the list of results is always made of one generic case and of some degenerate
cases. Each degenerate case represents a finite number of prime fields, while the generic case
represents an infinite number of them. The field Q always is in the generic case.

You may like to know more precisely what is the generic case for your computation of
f(x). Then ask for currentDcase:

currentDcase O$DDPF

characteristic does not divide 12*11

322

However, you must be aware that the degeneracy may have different reasons : either
mathematical reasons (like the case characteristic divides 12 in the example above), or just
opportunity reasons due to the way the computation is performed (like the case characteristic
divides 11).

Remark- It will become possible, some day, to issue f(z) instead of allCases(fz). Some
"flag" will then allow the computation of the generic case only.

Remark- When computing with univariate polynomials, you may avoid a lot of un-
significant degenerate cases by using the DDUnivariatePolynomial domain constructor (ab-
breviated DDUP). It is similar to the standard Sparse UnivariatePolynomial constructor,
but when possible in the algorithms the equality tests between coefficents are replaced by
"rough" equality tests. Two polynomials pl and p2 in DDUP are said eqRough if they are
equal in every prime field in the current case (defined below). This is very simple to test and
cannot lead to a splitting. For example, in the division of some pl by some p2 in DD UP,
the test p2 = 1 which is only used to fasten the division is replaced by p2 eqRough 1, but
the test p2 = 0 remains unchanged, since it ensures that one does not divides by 0. Our
first example then has only one degenerate case:

DPOLY: = DDUP(DDPF)

X:= varPolO)$DPOLY

dsqfr?(dpoly:DPOLY):B == if deg(gcd(dpoly,deriv(dpoly)))=O then true

else false

dpolyO:DPOLY:= X**12+1

allCases(dsqfr?,dpolyO)$DDCP(DPOLY,B)

E value is false in case characteristic divides 12,

value is true in case characteristic does not divide 12)

The current case- Let us consider the evaluation of sqfr?(polyO) above. Before the
evaluation, DDPF represents a prime field of any characteristic. But after the evaluation, it
represents a prime field of any characteristic not dividing 11 x 12. We say that the current
case for DDPF is first any characteristic and then characteristic does not divide 11 x 12.
At every moment, the function currentDcase0 returns the value of the current case. It is
also possible to use the function dcharO, described below.

What happened is that, during the evaluation, the system was asked whether 12 = 0 or
not. It led to a splitting of the case any characteristic in two subcases : either characteristic
does not divide 12, and the answer is false, or characteristic divides 12, and the answer is
true. The computations went on in the generic case, until the question 11 = 0 was met,
which led to a second splitting.

The management of the different cases is similar for every application of dynamical
evaluation. It is currently performed at Scratchpad level, in the DDControlPackage. This
package is made of an external function allCases and an internal function oneCase.

323

Starting from any current case ca, the call of oneCase(f, x) returns the value y of f(x)
in some subcase ca' of ca, together with this subcase ca', and the list Ica of the subcases
which have been left aside during the computation (adjoining ca' to Ica gives a partition of
ca).

The function allCases(f, x) manages the list ket of cases to be treated, as well as the
list Ir of results yet obtained. To begin with, Ict has the current case as unique element,
and Ir is empty. Until bet is empty, the function allCases

" Sets the current case to the first element ca of bt;

" Removes this first element ca from the list lt;

" Calls one Case(f , x) which gives some y, ca', and Ica, as above;

* Adds Ica to kIt;
" And adds the pair (y, ca') to I.

If the program terminates (but it is easy to imagine tricky examples where it does not),
the list Ir of results is returned, with each result formatted

value is ... in case ...

as in the examples presented in this paper.

Selection of some characteristics- You may want DDPF to represent only some
prime fields. For example, assume you want to perform the same computation over the finite
fields GF(p) for p prime less than 20, but not over the other prime fields. The product of the
primes less than 20 is 9699690. You have two possibilities for your purpose : You may issue
either setDchar(9699690) (I want the characteris'tic to be any prime divisor of 9699690) or
areEqual(9699690,O) (I want the element 9699690 in my DDPF to be equal to 0).

Here is a very simple example of a modular computation of gcd's, proving that the
given polynomials are coprime over Q [D-S-T]. Since the current allCases function requires
a univariate function as first argument, we must build the domain of pairs of polynomials

polyl:POLY:= X**2+i

poly2:POLY:= X+i

PAIR:= Record(pi:POLY,p2: POLY)

gcdpair (pair: PAIR) : POLY == gcd (pair. pi, pair. p2) $POLY

setDchar(9699690) $DDPF

pairO:= [polyi,poly2j

alilCases (gcdpair, pairO)$DDCP (PAIR, POLY)

E value is X+i in case characteristic divides 2,
value is I in case characteristic divides 4849845)

You may, on the contrary, want to avoid some characteristics. For example because
they correspond to exceptional cases that you do not want to consider. In books about
elliptic curves are assertions like "let K denote a field of characteristic different from 2 or

324

3". Similarly, you may then use either setDchar(-2 * 3) or areDifferent(2 * 3, 0).

You may also use setDchar(O) if you want to compute over the field of rational numbers,
but then the standard RationalNumber field will probably be more efficient. This case
appears as characteristic = 0. It cannot be reached from any other case by computations in
DDPF.

More interesting is setDchar(1) which makes the current case to be any characteristic.
It is the default choice when you call DDPF, but it may get changed after some computation.

The characteristic functions- A Field in Scratchpad must be endowed with a
characteristic function, with ao arguments and with value a non-negative integer. In the
DDPF field, the value of this function is usually an error message. Except if the current
case corresponds to exactly one characteristic : You get the value 0 if th, zurrent case is
characteristic = 0, and the value p if the current case is characteristic divides p for some
prime number p.

In addition, in DDPF is a function called dchar. It has no argument, its value is a
rational integer, and it never returns an error message. The value of dcharO is

a 0 in case characteristic = 0,

e 1 in case any characteristic,

* n (> 1) in case characteristic divides n,

* and -n (n > 1) in case characteristic does not divide n.

12 =$DDPF 0

false

dchar($DDPF

-12

setDchar(i)$DDPF

true

dcharO)$DDPF

I

Non-prime fields- From the DDPrimeField domain, it is possible to build other
fields of arbitrary characteristic. For example the field of rational functions of one variable
over a prime field is obtained from univariate polynomials with the standard Scratchpad
QuotientField domain constructor:

FRAC:= QF(POLY)
divide (pair:PAIR) :FRAC

pair.p2 =$POLY 0 => O$FRAC

325

pair.pi /$FRAC pair.p2

allCases(divide ,pairO)$DDCP(PAIR,FRAC)

E value is X-i in case characteristic divides 2,

value is X1+1 in case characteristic does not divide 2)

This gives access to purely transcendental extensions of DDPF. For algebraic extensions,
the standard SimpleAlgebraicEztension domain constructor is generally difficult to use: This
constructor requires an irreducible polynomial as argument, so that you must restrict the
characteristic in order to ensure the irreducibility. For example, if you want to build the
extension of DDPF by a root of X 2 + 1, you have to restrict to the characteristics 0 or p
with p 0 0 and such that -1 is not a square modulo p, i.e. p a 3 mod.4 [Sa]. But there
is an infinite number of such primes, and also an infinite number of primes p such that
p # 3 mod.4. As a consequence, it is impossible with the DDPF domain to restrict to every
possible prime field where X 2 + 1 is irreducible.

But actually this does not matter, since Scratchpad will soon be able to construct the
extension of a given field by any root of a given polynomial, irreducible or not [D-D-2]. It
will then be possible to compute in a large number of fields of arbitrary characteristic.

Conclusion- The general prime field described here is an example of dynamical eval-
uation [D-R]. It consists in handling cases, each case corresponding to several domains in
some category (and even to an infinite number of such domains). When it is needed during
the computation, a case splits in two disjoint subcases. The initial case is then forgotten, and
the two subcases are handled in parallel. Of course, they may themselves later split, and so
on. This method was initiated by the D5system for computations with algebraic numbers in
Reduce. It happens that Scratchpad is better suited than the "classical" computer algebra
systems for the development of the numerous possible applications of dynamical evaluation,
among which are the features described above.

References-

[D-S-T] J.H.Davenport, Y.Siret, E.Tournier - Calcul formel, Masson,1986
[D-D-D] J.Della Dora, C.Dicrescenzo, D.Duval - About a new method for computing
in algebraic number fields, LNCS 204, p.289-290, 1985
(D-D-1] C.Dicrescenzo, D.Duval - Computations with algebraic numbers: The D5
method, Submitted to publication
[D-D-2] C.Dicrescenzo, D.Duval - Algebraic extensions and algebraic closure in
Scratchpad 2, Proc.ISSAC'88, to appear,1988

[D-R] D.Duval, J.-C.Reynaud - Esquisses et calcul formel, In preparation

[Je] R.D.Jenks - A primer : 11 keys to new Scratchpad, LNCS 174, p.123-147, 1984
[Sa] P.Samuel - Thiorie algibrique des nombres, Hermann, 1971

326

